Proton Binding to Proteins: pKa Calculations with Explicit and Implicit Solvent Models

Thomas Simonson, Jens Carlsson, David A. Case

Research output: Contribution to journalArticlepeer-review

247 Scopus citations

Abstract

Ionizable residues play important roles in protein structure and activity, and proton binding is a valuable reporter of electrostatic interactions in these systems. We use molecular dynamics free energy simulations (MDFE) to compute proton pKa shifts, relative to a model compound in solution, for three aspartate side chains in two proteins. Simulations with explicit solvent and with an implicit, dielectric continuum solvent are reported. The implicit solvent simulations use the generalized Born (GB) model, which provides an approximate, analytical solution to Poisson's equation. With explicit solvent, the direction of the pKa shifts is correct in all three cases with one force field (AMBER) and in two out of three cases with another (CHARMM). For two aspartates, the dielectric response to ionization is found to be linear, even though the separate protein and solvent responses can be nonlinear. For thioredoxin Asp26, nonlinearity arises from the presence of two substates that correspond to the two possible orientations of the protonated carboxylate. For this side chain, which is partly buried and has a large pK a upshift, very long simulations are needed to correctly sample several slow degrees of freedom that reorganize in response to the ionization. Thus, nearby Lys57 rotates to form a salt bridge and becomes buried, while three waters intercalate along the opposite edge of Asp26. Such strong and anisotropic reorganization is very difficult to predict with Poisson-Boltzmann methods that only consider electrostatic interactions and employ a single protein structure. In contrast, MDFE with a GB dielectric continuum solvent, used for the first time for pKa calculations, can describe protein reorganization accurately and gives encouraging agreement with experiment and with the explicit solvent simulations.

Original languageEnglish (US)
Pages (from-to)4167-4180
Number of pages14
JournalJournal of the American Chemical Society
Volume126
Issue number13
DOIs
StatePublished - Apr 7 2004
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Proton Binding to Proteins: pKa Calculations with Explicit and Implicit Solvent Models'. Together they form a unique fingerprint.

Cite this