QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices

Fei Hua, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel Stein, Yufei Ding, Eddy Z. Zhang, Travis Humble, Ang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The success of a quantum algorithm hinges on the ability to orchestrate a successful application induction. Detrimental overheads in mapping general quantum circuits to physically implementable routines can be the deciding factor between a successful and erroneous circuit induction. In QASMTrans, we focus on the problem of rapid circuit transpilation. Transpilation plays a crucial role in converting high-level, machine-agnostic circuits into machine-specific circuits constrained by physical topology and supported gate sets. The efficiency of transpilation continues to be a substantial bottleneck, especially when dealing with larger circuits requiring high degrees of inter-qubit interaction. QASMTrans is a high-performance C++ quantum transpiler framework that demonstrates 3-1111 × speedups compared to the commonly used Qiskit transpiler. We observe speedups on large dense circuits such as 'uccsd-n24' which require gates. QASMTrans successfully transpiles the aforementioned circuits in 7.9s, whilst Qiskit needs 502 seconds with optimization 1 and exceeds an hour of transpilation time with optimization 3. With QASMTrans providing transpiled circuits in a fraction of the time of prior transpilers, potential design space exploration, and heuristic-based transpiler design becomes substantially more tractable. QASMTrans is released at http://github.com/pnnl/qasmtrans.

Original languageEnglish (US)
Title of host publicationProceedings of 2023 SC Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis, SC Workshops 2023
PublisherAssociation for Computing Machinery
Pages1468-1477
Number of pages10
ISBN (Electronic)9798400707858
DOIs
StatePublished - Nov 12 2023
Externally publishedYes
Event2023 International Conference on High Performance Computing, Network, Storage, and Analysis, SC Workshops 2023 - Denver, United States
Duration: Nov 12 2023Nov 17 2023

Publication series

NameACM International Conference Proceeding Series

Conference

Conference2023 International Conference on High Performance Computing, Network, Storage, and Analysis, SC Workshops 2023
Country/TerritoryUnited States
CityDenver
Period11/12/2311/17/23

All Science Journal Classification (ASJC) codes

  • Human-Computer Interaction
  • Computer Networks and Communications
  • Computer Vision and Pattern Recognition
  • Software

Keywords

  • Compiler
  • IO
  • Optimizaton
  • QASMTrans

Fingerprint

Dive into the research topics of 'QASMTrans: A QASM Quantum Transpiler Framework for NISQ Devices'. Together they form a unique fingerprint.

Cite this