Quantized Densely Connected U-Nets for Efficient Landmark Localization

Zhiqiang Tang, Xi Peng, Shijie Geng, Lingfei Wu, Shaoting Zhang, Dimitris Metaxas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Scopus citations

Abstract

In this paper, we propose quantized densely connected U-Nets for efficient visual landmark localization. The idea is that features of the same semantic meanings are globally reused across the stacked U-Nets. This dense connectivity largely improves the information flow, yielding improved localization accuracy. However, a vanilla dense design would suffer from critical efficiency issue in both training and testing. To solve this problem, we first propose order-K dense connectivity to trim off long-distance shortcuts; then, we use a memory-efficient implementation to significantly boost the training efficiency and investigate an iterative refinement that may slice the model size in half. Finally, to reduce the memory consumption and high precision operations both in training and testing, we further quantize weights, inputs, and gradients of our localization network to low bit-width numbers. We validate our approach in two tasks: human pose estimation and face alignment. The results show that our approach achieves state-of-the-art localization accuracy, but using $$\sim $$ 70% fewer parameters, $$\sim $$ 98% less model size and saving $$\sim $$ 32 $$\times $$ training memory compared with other benchmark localizers.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Martial Hebert, Yair Weiss
PublisherSpringer Verlag
Pages348-364
Number of pages17
ISBN (Print)9783030012182
DOIs
StatePublished - 2018
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: Sep 8 2018Sep 14 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11207 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period9/8/189/14/18

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Quantized Densely Connected U-Nets for Efficient Landmark Localization'. Together they form a unique fingerprint.

Cite this