Random projections with asymmetric quantization

Xiaoyun Li, Ping Li

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

The method of random projection has been a popular tool for data compression, similarity search, and machine learning. In many practical scenarios, applying quantization on randomly projected data could be very helpful to further reduce storage cost and facilitate more efficient retrievals, while only suffering from little loss in accuracy. In real-world applications, however, data collected from different sources may be quantized under different schemes, which calls for a need to study the asymmetric quantization problem. In this paper, we investigate the cosine similarity estimators derived in such setting under the Lloyd-Max (LM) quantization scheme. We thoroughly analyze the biases and variances of a series of estimators including the basic simple estimators, their normalized versions, and their debiased versions. Furthermore, by studying the monotonicity, we show that the expectation of proposed estimators increases with the true cosine similarity, on a broader family of stair-shaped quantizers. Experiments on nearest neighbor search justify the theory and illustrate the effectiveness of our proposed estimators.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Random projections with asymmetric quantization'. Together they form a unique fingerprint.

Cite this