Rapid and dynamic detection of antimicrobial treatment response using spectral amplitude modulation in MZO nanostructure-modified quartz crystal microbalance

Yifan Wu, Guangyuan Li, Yuzhi Hong, Xilin Zhao, Pavel Ivanoff Reyes, Yicheng Lu

Research output: Contribution to journalArticlepeer-review

Abstract

We report a dynamic and rapid detection of the response of S. epidermidis to various antimicrobial treatments utilizing the real-time spectral amplitude modulations of the magnesium zinc oxide nanostructure-modified quartz crystal microbalance (MZOnano-QCM) biosensor. The sensor consists of a quartz crystal microbalance (QCM) with magnesium zinc oxide (MZO) nanostructures grown directly on the sensing electrode using metalorganic chemical vapor deposition (MOCVD). Combining the high sensitivity detection of bacteria provided by the MZO nanostructures with the QCM's dynamic acoustic spectrum makes a highly-sensitive dynamic biosensor well-suited for monitoring viscoelastic transitions during drug treatment compared to the QCM's conventional frequency shift signals. We demonstrated dynamically monitoring the response of S. epidermidis to various concentrations of the drug ciprofloxacin, and response to three different antimicrobials vancomycin, oxacillin, and ciprofloxacin, using spectral amplitude modulations of the MZOnano-QCM. Our results indicate that the amplitude modulations exhibit high sensitivity to S. epidermidis response to different drug treatments compared to the conventional frequency shift signals of the device, allowing for rapid determination (within 1.5 h) of the efficacy of the antimicrobial drug. The high sensitivity demonstrated by the spectral amplitude modulations is attributed to the direct relationship of these signals to the viscoelastic transitions of the bacterial cells on the device's sensing area while responding to drug treatment. This relationship is established by the Butterworth-Van-Dyke (BVD) model of the MZOnano-QCM. Standard microbiological protocols and assays were performed to determine the optimal drug dosages and the minimum inhibitory concentrations to serve as the benchmark for the sensor data.

Original languageEnglish (US)
Article number106071
JournalJournal of Microbiological Methods
Volume178
DOIs
StatePublished - Nov 2020

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Molecular Biology
  • Microbiology (medical)

Keywords

  • Antimicrobial susceptibility
  • Bacterial culture monitoring
  • Bulk acoustic wave sensors
  • Magnesium zinc oxide nanostructures
  • Quartz crystal microbalance

Fingerprint Dive into the research topics of 'Rapid and dynamic detection of antimicrobial treatment response using spectral amplitude modulation in MZO nanostructure-modified quartz crystal microbalance'. Together they form a unique fingerprint.

Cite this