Ratio trace formulation of wasserstein discriminant analysis

Hexuan Liu, Yunfeng Cai, You Lin Chen, Ping Li

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

We reformulate the Wasserstein Discriminant Analysis (WDA) as a ratio trace problem and present an eigensolver-based algorithm to compute the discriminative subspace of WDA. This new formulation, along with the proposed algorithm, can be served as an efficient and more stable alternative to the original trace ratio formulation and its gradient-based algorithm. We provide a rigorous convergence analysis for the proposed algorithm under the self-consistent field framework, which is crucial but missing in the literature. As an application, we combine WDA with low-dimensional clustering techniques, such as K-means, to perform subspace clustering. Numerical experiments on real datasets show promising results of the ratio trace formulation of WDA in both classification and clustering tasks.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Ratio trace formulation of wasserstein discriminant analysis'. Together they form a unique fingerprint.

Cite this