ReadsRE: Retrieval-Augmented Distantly Supervised Relation Extraction

Yue Zhang, Hongliang Fei, Ping Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Distant supervision (DS) has been widely used to automatically construct (noisy) labeled data for relation extraction (RE). To address the noisy label problem, most models have adopted the multi-instance learning paradigm by representing entity pairs as a bag of sentences. However, this strategy depends on multiple assumptions (e.g., all sentences in a bag share the same relation), which may be invalid in real-world applications. Besides, it cannot work well on long-tail entity pairs which have few supporting sentences in the dataset. In this work, we propose a new paradigm named retrieval-augmented distantly supervised relation extraction (ReadsRE), which can incorporate large-scale open-domain knowledge (e.g., Wikipedia) into the retrieval step. ReadsRE seamlessly integrates a neural retriever and a relation predictor in an end-to-end framework. We demonstrate the effectiveness of ReadsRE on the well-known NYT10 dataset. The experimental results verify that ReadsRE can effectively retrieve meaningful sentences (i.e., denoise), and relieve the problem of long-tail entity pairs in the original dataset through incorporating external open-domain corpus. Through comparisons, we show ReadsRE outperforms other baselines for this task.

Original languageEnglish (US)
Title of host publicationSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages2257-2262
Number of pages6
ISBN (Electronic)9781450380379
DOIs
StatePublished - Jul 11 2021
Externally publishedYes
Event44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021 - Virtual, Online, Canada
Duration: Jul 11 2021Jul 15 2021

Publication series

NameSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021
Country/TerritoryCanada
CityVirtual, Online
Period7/11/217/15/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Keywords

  • data augmentation
  • distant supervision
  • relation extraction

Fingerprint

Dive into the research topics of 'ReadsRE: Retrieval-Augmented Distantly Supervised Relation Extraction'. Together they form a unique fingerprint.

Cite this