Real-Time Proxy-Control of Re-Parameterized Peripheral Signals using a Close-Loop Interface

Vilelmini Kalampratsidou, Steven Kemper, Elizabeth B. Torres

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


The fields that develop methods for sensory substitution and sensory augmentation have aimed to control external goals using signals from the central nervous systems (CNS). Less frequent however, are protocols that update external signals self-generated by interactive bodies in motion. There is a paucity of methods that combine the body-heart-brain biorhythms of one moving agent to steer those of another moving agent during dyadic exchange. Part of the challenge to accomplish such a feat has been the complexity of the setup using multimodal bio-signals with different physical units, disparate time scales and variable sampling frequencies. In recent years, the advent of wearable bio-sensors that can non-invasively harness multiple signals in tandem, has opened the possibility to re-parameterize and update the peripheral signals of interacting dyads, in addition to improving brain-and/ or body-machine interfaces. Here we present a co-adaptive interface that updates efferent somatic-motor output (including kinematics and heart rate) using biosensors; parameterizes the stochastic bio-signals, sonifies this output, and feeds it back in re-parameterized form as visuo/audio-kinesthetic reafferent input. We illustrate the methods using two types of interactions, one involving two humans and another involving a human and its avatar interacting in near real time. We discuss the new methods in the context of possible new ways to measure the influences of external input on internal somatic-sensory-motor control.

Original languageEnglish (US)
Article numbere61943
JournalJournal of Visualized Experiments
Issue number171
StatePublished - May 2021

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology


Dive into the research topics of 'Real-Time Proxy-Control of Re-Parameterized Peripheral Signals using a Close-Loop Interface'. Together they form a unique fingerprint.

Cite this