Rearrangement on lattices with pick-n-swaps: Optimality structures and efficient algorithms

Research output: Contribution to journalArticlepeer-review

Abstract

We study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully-labeled, where each item has a unique label, or partially-labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following-based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher-dimensional lattices become computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following-based algorithms remain optimal in the asymptotic sense for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1.x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms. The implementation of the algorithms from the paper can be found at github.com/arc-l/lattice-rearrangement.

Original languageEnglish (US)
JournalInternational Journal of Robotics Research
DOIs
StateAccepted/In press - 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Modeling and Simulation
  • Mechanical Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence
  • Applied Mathematics

Keywords

  • Rearrangement
  • manipulation task planning

Fingerprint

Dive into the research topics of 'Rearrangement on lattices with pick-n-swaps: Optimality structures and efficient algorithms'. Together they form a unique fingerprint.

Cite this