Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes

Yunqi Li, Lijia An, Qingrong Huang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Replica exchange Monte Carlo simulation equipped with an orientation-enhanced hydrophobic interaction was utilized to study the impacts of molar ratio and ionic strength on the complex formation of human serum albumin (HSA) and catechin. Only a small amount of catechins was found to act as bridges in the formation of HSA-catechin complexes. Selective binding behavior was observed at low catechin to HSA molar ratio (R). Increase of catechin amount can suppress HSA self-aggregation and diminish the selectivity of protein binding sites. Strong saturation binding with short-range interactions was found to level off at around 4.6 catechins per HSA on average, while this number slowly increased with R when long-range interactions were taken into account. Meanwhile, among the three rings of catechin, the 3, 4-dihydroxyphenyl (B-ring) shows the strongest preference to bind HSA. Neither the aggregation nor the binding sites of the HSA-catechin complex was sensitive to ionic strength, suggesting that the electrostatic interaction is not a dominant force in such complexes. These results provide a further molecular level understanding of protein-polyphenol binding, and the strategy employed in this work shows a way to bridge phase behaviors at macroscale and the distribution of binding sites at residue level.

Original languageEnglish (US)
Pages (from-to)10362-10372
Number of pages11
JournalJournal of Physical Chemistry B
Volume118
Issue number35
DOIs
StatePublished - Sep 4 2014

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes'. Together they form a unique fingerprint.

Cite this