Representing urban functions through zone embedding with human mobility patterns

Zijun Yao, Yanjie Fu, Bin Liu, Wangsu Hu, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

20 Scopus citations

Abstract

Urban functions refer to the purposes of land use in cities where each zone plays a distinct role and cooperates with each other to serve people's various life needs. Understanding zone functions helps to solve a variety of urban related problems, such as increasing traffic capacity and enhancing locationbased service. Therefore, it is beneficial to investigate how to learn the representations of city zones in terms of urban functions, for better supporting urban analytic applications. To this end, in this paper, we propose a framework to learn the vector representation (embedding) of city zones by exploiting large-scale taxi trajectories. Specifically, we extract human mobility patterns from taxi trajectories, and use the "co-occurrence" of origindestination zones to learn zone embeddings. To utilize the spatio-temporal characteristics of human mobility patterns, we incorporate mobility direction, departure/arrival time, destination attraction, and travel distance into the modeling of zone embeddings. We conduct extensive experiments with real-world urban datasets of New York City. Experimental results demonstrate the effectiveness of the proposed embedding model to represent urban functions of zones with human mobility data.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3919-3925
Number of pages7
ISBN (Electronic)9780999241127
DOIs
StatePublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: Jul 13 2018Jul 19 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Other

Other27th International Joint Conference on Artificial Intelligence, IJCAI 2018
CountrySweden
CityStockholm
Period7/13/187/19/18

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Representing urban functions through zone embedding with human mobility patterns'. Together they form a unique fingerprint.

Cite this