RhoA inactivation prevents photoreceptor axon retraction in an in vitro model of acute retinal detachment

Aurora Maria Fontainhas, Ellen Townes-Anderson

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

PURPOSE. An early injury response to retinal detachment is disruption of synaptic connectivity between photoreceptors and second-order neurons. Most dramatic is the retraction ofrod cell axons and their terminals away from the outer synaptic layer and toward their cell bodies. This study tested whether axonal retraction in detached retina was due to the activation of the small GTPase RhoA and was preventable using RhoA antagonists. METHODS. Retinal detachments were created in in vitro preparations of porcine eyecups. RhoA activation was determined with a Rhotekin binding assay. To block axon retraction, drugs were applied to neural retinal explants either before or after detachment from the retinal pigment epithelium. Presynaptic movement was quantified by image analysis of double-labeled retinas examined with confocal microscopy. RESULTS. Active RhoA increases transiently afterdetachment followed by morphologic evidence of axonal retraction over the next 24 hours. Pretreating the retina with a RhoA antagonist, CT-04, or a Rho kinase inhibitor, Y27632, at multiple concentrations significantly inhibited axonal retraction. Reducing calcium influx through L-type calcium channels with nicardipine also blocked retraction. To create a more plausible therapeutic scenario, drug treatments were delayed and appliedafter retinal detachment. The Rhokinase inhibitor, but not nicardipine, significantly blocked rod axonal retraction when applied up to 6 hours after detachment. CONCLUSIONS. Thus, RhoA and downstream Rho kinase activity constitute part of the mechanism that produces rod axonal retraction in retinal explants. Treatments that manipulate Rho A signaling may promote synaptic stability after retinal detachment.

Original languageEnglish (US)
Pages (from-to)579-587
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Volume52
Issue number1
DOIs
StatePublished - Jan 2011

All Science Journal Classification (ASJC) codes

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'RhoA inactivation prevents photoreceptor axon retraction in an in vitro model of acute retinal detachment'. Together they form a unique fingerprint.

Cite this