Abstract
Robust estimators of the restricted covariance matrices associated with elliptical graphical models are studied. General asymptotic results, which apply to both decomposable and nondecomposable graphical models, are presented for robust plug-in type estimators. These extend results previously established only for the decomposable case. Furthermore, a class of graphical M-estimators for the restricted covariance matrices is introduced and compared with the corresponding plug-in M-estimators. The two approaches are shown to be asymptotically equivalent under random sampling from an elliptical distribution. A simulation study demonstrates the superiority of the graphical M-estimators for small samples.
Original language | English (US) |
---|---|
Pages (from-to) | 865-882 |
Number of pages | 18 |
Journal | Biometrika |
Volume | 101 |
Issue number | 4 |
DOIs | |
State | Published - Dec 1 2014 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Mathematics(all)
- Agricultural and Biological Sciences (miscellaneous)
- Agricultural and Biological Sciences(all)
- Statistics, Probability and Uncertainty
- Applied Mathematics
Keywords
- Affine equivariance
- Deviance test
- Gaussian graphical model
- M-estimator
- Partial correlation