Rod cells dissociated from mature salamander retina: Ultrastructure and uptake of horseradish peroxidase

E. Townes-Anderson, P. R. MacLeish, E. Raviola

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

To test the effects of isolation on adult neurons, we investigated the fine structure and synaptic activity of rod cells dissociated from the mature salamander retina and maintained in vitro. First, freshly isolated rod cells appeared remarkable similar to their counterparts in the intact retina: the outer segment retained its stack of membranous disks and the inner segment contained its normal complements of organelles. Some reorganization of the cell surface, however, was observed: (a) radial fins, present at the level of the cell body, were lost; and (b) the apical and distal surfaces of the inner and outer segments, respectively became broadly fused. Second, the synaptic endings or pedicles retained their presynaptic active zones: reconstruction of serially sectioned pedicles by using three-dimensional computer graphics revealed that 73% of the synaptic ribbons remained attached to the plasmalemma either at the cell surface or along its invaginations. Finally, tracer experiments that used horseradish peroxidase demonstrated that dissociated rod cells recycled synaptic vesicle membrane in the dark and thus probably released transmitter by exocytosis. Under optimal conditions, a maximum of 40% of the synaptic vesicles within the pedicle were labeled. As in the intact retina, uptake of horseradish peroxidase was suppressed by light. Thus, freshly dissociated receptor neurons retained many of their adult morphological and physiological characteristics. In long-term culture, photoreceptors tended to round up; however, active zones were present even 2 wk after removal of the postsynaptic processes.

Original languageEnglish (US)
Pages (from-to)175-188
Number of pages14
JournalJournal of Cell Biology
Volume100
Issue number1
DOIs
StatePublished - 1985
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Cell Biology

Fingerprint

Dive into the research topics of 'Rod cells dissociated from mature salamander retina: Ultrastructure and uptake of horseradish peroxidase'. Together they form a unique fingerprint.

Cite this