Scaling properties of saturated hydraulic conductivity in soil

D. Giménez, W. J. Rawls, J. G. Lauren

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Abstract. Variability of saturated hydraulic conductivity, ksat, increases when sample size decreases implying that saturated water flow might be a scaling process. The moments of scaling distributions observed at different resolutions can be related by a power-law function, with the exponent being a single value (simple scaling) or a function (mutiscaling). Our objective was to investigate scaling characteristics of ksat using the method of the moments applied to measurements obtained with different sample sizes. We analyzed three data sets of ksat measured in: (1) cores with small diameter and increasing length spanning a single soil horizon, (2) columns with increasing cross sectional area and constant length, and (3) columns with increasing cross sectional area and length, the longest column spanning three soil horizons. Visible porosity (macroporosity) was traced on acetate transparency sheets prior to measurement of ksat in situation (2). Six moments were calculated assuming that observations followed normal (ksat, macroporosity) and/or log-normal (ksat) distributions. Scaling of ksat was observed in all three data sets. Simple scaling was only found when flux occurred in small cross sectional areas of a simple soil horizon (data set (1)). Multiscaling of ksat distributions was found when larger soil volumes were involved in the flux process (data sets (2) and (3)). Moments of macroporosity distributions showed multiscaling characteristics, with exponents similar to those from Inksat distributions. The scaling characteristics of ksat reported in this paper agree with similar results found at, larger scales using semivariograms. Scaling exponents from the semivariogram and the moment techniques could be complemented, as demonstrated by the agreement between macroporosity scaling exponents found with both techniques.

Original languageEnglish (US)
Pages (from-to)115-130
Number of pages16
JournalDevelopments in Soil Science
Volume27
Issue numberC
DOIs
StatePublished - 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Soil Science
  • Earth-Surface Processes

Keywords

  • fractal
  • macroporosity
  • multiscaling

Fingerprint Dive into the research topics of 'Scaling properties of saturated hydraulic conductivity in soil'. Together they form a unique fingerprint.

Cite this