TY - JOUR
T1 - Seasonal time bombs
T2 - Dominant temperate viruses affect Southern Ocean microbial dynamics
AU - Brum, Jennifer R.
AU - Hurwitz, Bonnie L.
AU - Schofield, Oscar
AU - Ducklow, Hugh W.
AU - Sullivan, Matthew B.
N1 - Funding Information:
This research was supported by the National Science Foundation through a Postdoctoral Fellowship in Polar Regions Research to JRB (award #1019328) and the Palmer LTER project (award #0823101) through the Antarctic Organisms and Ecosystems Program in the Antarctic Sciences Division, and is funded in part by the Gordon and Betty Moore Foundation through grants GBMF2631 and GBMF3790 to MBS. Sequencing was supported through BIO5 funding to MBS. We gratefully acknowledge an allocation of computer time from the UA Research Computing High Performance Computing (HPC) and High Throughput Computing (HPC) at the University of Arizona. We thank A Culley and C Schvarcz for assistance in collecting virus samples; A Alpert and E Woznica for their collection and processing of bacterial production samples; K Coleman, M Garzio, T Miles and C Funkey for assistance with sample collection; the employees of Raytheon Polar Services Company for their support; A Gregory and B Poulos for assistance in conducting linker amplification; B Poulos and V Rich for assistance with bacterial DNA extraction; A Westveld for assistance with social network analysis; and members of the Tucson Marine Phage Lab, E Allers and V Rich for their support and critical review of this research. All metagenomic reads were deposited to iPlant (www.iplantcollaborative.org) under the project name imicrobe/southern_ocean_viromes. Ecological data from the Palmer, Antarctica LTER project (chlorophyll a concentration and bacterial production) are available at: http://oceaninformatics.ucsd.edu/datazoo/ data/pallter/datasets.
Publisher Copyright:
© 2016 International Society for Microbial Ecology All rights reserved.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring-summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus-host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus-host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.
AB - Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring-summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus-host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus-host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.
UR - http://www.scopus.com/inward/record.url?scp=84955204689&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955204689&partnerID=8YFLogxK
U2 - 10.1038/ismej.2015.125
DO - 10.1038/ismej.2015.125
M3 - Article
C2 - 26296067
AN - SCOPUS:84955204689
SN - 1751-7362
VL - 10
SP - 437
EP - 449
JO - ISME Journal
JF - ISME Journal
IS - 2
ER -