Self-assembly of monolayer-thick alumina particle - Epoxy composite films

Bryan R. Jackson, Xiangyuan Liu, Elizabeth F. McCandlish, Richard Riman

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

Monolayer-thick composite films composed of α-alumina and Spurr's epoxy were prepared via a self-assembly process known as fluid forming. The process makes use of a high-spreading-tension fluid composed of volatile and nonvolatile components to propel particles across the air - water interface within a water bath. Continuous addition of the particle suspension builds a 2D particle film at the air-water interface. The spreading fluid compresses the film into a densely packed array against a submerged substrate. The assembled monolayer is deposited onto the substrate by removing the substrate from the bath. A dispersion containing a narrow size distribution, 10μm α-alumina particles, light mineral oil, and 2-propanol was spread at the air-water interface and the alumina particles were assembled into densely packed arrays with an aerial packing fraction (APF) of 0.88. However, when mineral oil was replaced by Spurr's epoxy nonuniform films with low packing density resulted. It was found that replacing 2-propanol with a mixture of 2-propanol and 1-butanol with a volume ratio of 4:1 produced uniform, densely packed alumina/epoxy composite films. The role of the solvent mixture will be discussed.

Original languageEnglish (US)
Pages (from-to)11399-11403
Number of pages5
JournalLangmuir
Volume23
Issue number23
DOIs
Publication statusPublished - Nov 6 2007

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Cite this