Self-calibrating probability forecasting

Vladimir Vovk, Glenn Shafer, Ilia Nouretdinov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations


In the problem of probability forecasting the learner's goal is to output, given a training set and a new object, a suitable probability measure on the possible values of the new object's label. An on-line algorithm for probability forecasting is said to be well-calibrated if the probabilities it outputs agree with the observed frequencies. We give a natural nonasymptotic formalization of the notion of well-calibratedness, which we then study under the assumption of randomness (the object/label pairs are independent and identically distributed). It turns out that, although no probability forecasting algorithm is automatically well-calibrated in our sense, there exists a wide class of algorithms for "multiprobability forecasting" (such algorithms are allowed to output a set, ideally very narrow, of probability measures) which satisfy this property; we call the algorithms in this class "Venn probability machines". Our experimental results demonstrate that a 1-Nearest Neighbor Venn probability machine performs reasonably well on a standard benchmark data set, and one of our theoretical results asserts that a simple Venn probability machine asymptotically approaches the true conditional probabilities regardless, and without knowledge, of the true probability measure generating the examples.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PublisherNeural information processing systems foundation
ISBN (Print)0262201526, 9780262201520
StatePublished - 2004
Event17th Annual Conference on Neural Information Processing Systems, NIPS 2003 - Vancouver, BC, Canada
Duration: Dec 8 2003Dec 13 2003

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258


Conference17th Annual Conference on Neural Information Processing Systems, NIPS 2003
CityVancouver, BC

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Self-calibrating probability forecasting'. Together they form a unique fingerprint.

Cite this