TY - JOUR
T1 - Self-limiting electrospray deposition on polymer templates
AU - Lei, Lin
AU - Gamboa, Arielle R.
AU - Kuznetsova, Christianna
AU - Littlecreek, Sunshine
AU - Wang, Jingren
AU - Zou, Qingze
AU - Zahn, Jeffrey D.
AU - Singer, Jonathan P.
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (Tg) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics.
AB - Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (Tg) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics.
UR - http://www.scopus.com/inward/record.url?scp=85092553150&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092553150&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-74146-1
DO - 10.1038/s41598-020-74146-1
M3 - Article
C2 - 33057077
AN - SCOPUS:85092553150
SN - 2045-2322
VL - 10
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 17290
ER -