TY - GEN
T1 - Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction
AU - Zhang, Weijia
AU - Liu, Hao
AU - Liu, Yanchi
AU - Zhou, Jingbo
AU - Xiong, Hui
N1 - Funding Information:
This research is supported in part by grants from the National Natural Science Foundation of China (Grant No.71531001).
Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can improve parking efficiency, help urban planning, and ultimately alleviate city congestion. However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e.g., camera, ultrasonic sensor, and GPS). To this end, we propose Semi-supervised Hierarchical Recurrent Graph Neural Network (SHARE) for predicting city-wide parking availability. Specifically, we first propose a hierarchical graph convolution structure to model non-Euclidean spatial autocorrelation among parking lots. Along this line, a contextual graph convolution block and a soft clustering graph convolution block are respectively proposed to capture local and global spatial dependencies between parking lots. Additionally, we adopt a recurrent neural network to incorporate dynamic temporal dependencies of parking lots. Moreover, we propose a parking availability approximation module to estimate missing real-time parking availabilities from both spatial and temporal domain. Finally, experiments on two real-world datasets demonstrate the prediction performance of SHARE outperforms seven state-of-the-art baselines.
AB - The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can improve parking efficiency, help urban planning, and ultimately alleviate city congestion. However, it is a non-trivial task for predicting citywide parking availability because of three major challenges: 1) the non-Euclidean spatial autocorrelation among parking lots, 2) the dynamic temporal autocorrelation inside of and between parking lots, and 3) the scarcity of information about real-time parking availability obtained from real-time sensors (e.g., camera, ultrasonic sensor, and GPS). To this end, we propose Semi-supervised Hierarchical Recurrent Graph Neural Network (SHARE) for predicting city-wide parking availability. Specifically, we first propose a hierarchical graph convolution structure to model non-Euclidean spatial autocorrelation among parking lots. Along this line, a contextual graph convolution block and a soft clustering graph convolution block are respectively proposed to capture local and global spatial dependencies between parking lots. Additionally, we adopt a recurrent neural network to incorporate dynamic temporal dependencies of parking lots. Moreover, we propose a parking availability approximation module to estimate missing real-time parking availabilities from both spatial and temporal domain. Finally, experiments on two real-world datasets demonstrate the prediction performance of SHARE outperforms seven state-of-the-art baselines.
UR - http://www.scopus.com/inward/record.url?scp=85106064487&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106064487&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85106064487
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 1186
EP - 1193
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -