Shape prior modeling using sparse representation and online dictionary learning

Shaoting Zhang, Yiqiang Zhan, Yan Zhou, Mustafa Uzunbas, Dimitris N. Metaxas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

The recently proposed Sparse Shape Composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI2012 - 15th International Conference, Proceedings
EditorsNicholas Ayache, Herve Delingette, Polina Golland, Kensaku Mori
PublisherSpringer Verlag
Pages435-442
Number of pages8
ISBN (Print)9783642334535
DOIs
StatePublished - 2012
Event15th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2012 - Nice, France
Duration: Oct 1 2012Oct 5 2012

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume7512 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other15th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2012
CountryFrance
CityNice
Period10/1/1210/5/12

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Shape prior modeling using sparse representation and online dictionary learning'. Together they form a unique fingerprint.

Cite this