TY - JOUR
T1 - Shared molecular mechanisms in Alzheimer's disease and amyotrophic lateral sclerosis
T2 - Neurofilament-dependent transport of sAPP, FUS, TDP-43 and SOD1, with endoplasmic reticulum-like tubules
AU - Muresan, Virgil
AU - Muresan, Zoia Ladescu
N1 - Publisher Copyright:
© 2015 S. Karger AG, Basel.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Background: Amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder of the motor neurons, leads to the disorganization of the neurofilament (NF) cytoskeleton and - ultimately - the deterioration of the neuromuscular junction. Some familial cases of ALS are caused by mutated FUS, TDP-43 or SOD1; it is thought that the mutated proteins inflict pathology either by gain or loss of function. The proper function of the neuromuscular junction requires sAPP, a soluble proteolytic fragment of the amyloid-β precursor protein (APP) - a transmembrane protein implicated in the pathology of Alzheimer's disease (AD). Whether sAPP, FUS, TDP-43 and SOD1 are mechanistically linked in a common pathway deregulated in both AD and ALS is not known. Summary: We show that sAPP, TDP-43, FUS and SOD1 are transported to neurite terminals by a mechanism that involves endoplasmic reticulum (ER)-like tubules and requires peripherin NFs. The transport of these proteins, and the translocation of the ER protein reticulon 4 (Rtn4) into neurites was studied in CAD cells, a brainstem-derived neuronal cell line highly relevant to AD and ALS. We show that a significant fraction of sAPP is generated in the soma and accumulates in a juxtanuclear ER subdomain. In neurites, sAPP localizes to Rtn4-positive ER-like tubules that extend from the soma into the growth cone and colocalizes with peripherin NFs. Knocking down peripherin disrupts the NF network and diminishes the accumulation of sAPP, TDP-43, FUS, SOD1 and Rtn4 at terminals. Key Messages: We propose that the impediment of a common, ER-mediated mechanism of transport of sAPP, TDP-43, FUS and SOD1, caused by a disrupted NF network, could be part of the mechanisms leading to AD and ALS.Background: Effective therap.
AB - Background: Amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder of the motor neurons, leads to the disorganization of the neurofilament (NF) cytoskeleton and - ultimately - the deterioration of the neuromuscular junction. Some familial cases of ALS are caused by mutated FUS, TDP-43 or SOD1; it is thought that the mutated proteins inflict pathology either by gain or loss of function. The proper function of the neuromuscular junction requires sAPP, a soluble proteolytic fragment of the amyloid-β precursor protein (APP) - a transmembrane protein implicated in the pathology of Alzheimer's disease (AD). Whether sAPP, FUS, TDP-43 and SOD1 are mechanistically linked in a common pathway deregulated in both AD and ALS is not known. Summary: We show that sAPP, TDP-43, FUS and SOD1 are transported to neurite terminals by a mechanism that involves endoplasmic reticulum (ER)-like tubules and requires peripherin NFs. The transport of these proteins, and the translocation of the ER protein reticulon 4 (Rtn4) into neurites was studied in CAD cells, a brainstem-derived neuronal cell line highly relevant to AD and ALS. We show that a significant fraction of sAPP is generated in the soma and accumulates in a juxtanuclear ER subdomain. In neurites, sAPP localizes to Rtn4-positive ER-like tubules that extend from the soma into the growth cone and colocalizes with peripherin NFs. Knocking down peripherin disrupts the NF network and diminishes the accumulation of sAPP, TDP-43, FUS, SOD1 and Rtn4 at terminals. Key Messages: We propose that the impediment of a common, ER-mediated mechanism of transport of sAPP, TDP-43, FUS and SOD1, caused by a disrupted NF network, could be part of the mechanisms leading to AD and ALS.Background: Effective therap.
KW - Alzheimer's disease
KW - Amyloid-β precursor protein
KW - Amyotrophic lateral sclerosis
KW - Converging mechanisms of neurodegenerative diseases
KW - Endoplasmic reticulum
KW - FUS
KW - Motor neurons
KW - Neurofilaments
KW - SOD1
KW - TDP-43
UR - http://www.scopus.com/inward/record.url?scp=84958044118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958044118&partnerID=8YFLogxK
U2 - 10.1159/000439256
DO - 10.1159/000439256
M3 - Article
C2 - 26605911
AN - SCOPUS:84958044118
SN - 1660-2854
VL - 16
SP - 55
EP - 61
JO - Neurodegenerative Diseases
JF - Neurodegenerative Diseases
IS - 1-2
ER -