Shock-shock interaction over a hemisphere in hypersonic flow

Nadia Kianvashrad, Doyle Knight

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The interaction of an impinging oblique shock with a bow shock in front of a hemisphere in Mach 14.6 flow is simulated using a C++ code. The experiments were performed at the 48-inch Shock Tunnel at Calspan University of Buffalo Research Center (CUBRC). Due to the uncertainty in the exact location of the impinging shock, several calculations are required to achieve the correct location by matching the location of computational peak surface heat transfer and pressure with the corresponding experimental location. Two such calculations are presented in this paper. Both of the simulations show an Edney III type interaction. For the first simulation, the shock-shock interaction is statistically stationary with a dominant Strouhal number of 0.348. The time averaged flowfield shows general agreement with experimental surface pressure and heat transfer; however, the location of peak values are displaced from the experimental peak values by three degrees. The second calculation which has the correct prediction of peak location is not statistically stationary and displays several dominant Strouhal numbers.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
StatePublished - Jan 1 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
CountryUnited States
CitySan Diego
Period1/7/191/11/19

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Shock-shock interaction over a hemisphere in hypersonic flow'. Together they form a unique fingerprint.

Cite this