Sign-full random projections

Ping Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

The method of 1-bit (“sign-sign”) random projections has been a popular tool for efficient search and machine learning on large datasets. Given two D-dim data vectors u, v ? RD, one can generate x = PDi=1 uiri, and y = PDi=1 viri, where ri ~ N(0, 1) iid. Then one can estimate the cosine similarity ? from sgn(x) and sgn(y). In this paper, we study a series of estimators for “sign-full” random projections. First we prove E(sgn(x)y) = qp2 ?, which provides an estimator for ?. Interestingly this estimator can be substantially improved by normalizing y. Then we study estimators based on E (y-1x=0 + y+1x<0) and its normalized version. We analyze the theoretical limit (using the MLE) and conclude that, among the proposed estimators, no single estimator can achieve (close to) the theoretical optimal asymptotic variance, for the entire range of ?. On the other hand, the estimators can be combined to achieve the variance close to that of the MLE. In applications such as near neighbor search, duplicate detection, knn-classification, etc, the training data are first transformed via random projections and then only the signs of the projected data points are stored (i.e., the sgn(x)). The original training data are discarded. When a new data point arrives, we apply random projections but we do not necessarily need to quantize the projected data (i.e., the y) to 1-bit. Therefore, sign-full random projections can be practically useful. This gain essentially comes at no additional cost.

Original languageEnglish (US)
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages4205-4212
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: Jan 27 2019Feb 1 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period1/27/192/1/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Sign-full random projections'. Together they form a unique fingerprint.

Cite this