Simulating Dynamical Phases of Chiral p+ip Superconductors with a Trapped ion Magnet

Athreya Shankar, Emil A. Yuzbashyan, Victor Gurarie, Peter Zoller, John J. Bollinger, Ana Maria Rey

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Two-dimensional p+ip superconductors and superfluids are systems that feature chiral behavior emerging from the Cooper pairing of electrons or neutral fermionic atoms with nonzero angular momentum. Their realization has been a longstanding goal because they offer great potential utility for quantum computation and memory. However, they have so far eluded experimental observation both in solid-state systems as well as in ultracold quantum gases. Here, we propose to leverage the tremendous control offered by rotating two-dimensional trapped-ion crystals in a Penning trap to simulate the dynamical phases of two-dimensional p+ip superfluids. This is accomplished by mapping the presence or absence of a Cooper pair into an effective spin-1/2 system encoded in the ions' electronic levels. We show how to infer the topological properties of the dynamical phases, and discuss the role of beyond mean-field corrections. More broadly, our work opens the door to use trapped-ion systems to explore exotic models of topological superconductivity and also paves the way to generate and manipulate skyrmionic spin textures in these platforms.

Original languageEnglish (US)
Article number040324
JournalPRX Quantum
Volume3
Issue number4
DOIs
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • General Computer Science
  • Applied Mathematics
  • Mathematical Physics
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Simulating Dynamical Phases of Chiral p+ip Superconductors with a Trapped ion Magnet'. Together they form a unique fingerprint.

Cite this