Slx5-Slx8 ubiquitin ligase targets active pools of the Yen1 nuclease to limit crossover formation

Ibtissam Talhaoui, Manuel Bernal, Janet R. Mullen, Hugo Dorison, Benoit Palancade, Steven J. Brill, Gerard Mazón

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


The repair of double-stranded DNA breaks (DSBs) by homologous recombination involves the formation of branched intermediates that can lead to crossovers following nucleolytic resolution. The nucleases Mus81-Mms4 and Yen1 are tightly controlled during the cell cycle to limit the extent of crossover formation and preserve genome integrity. Here we show that Yen1 is further regulated by sumoylation and ubiquitination. In vivo, Yen1 becomes sumoylated under conditions of DNA damage by the redundant activities of Siz1 and Siz2 SUMO ligases. Yen1 is also a substrate of the Slx5-Slx8 ubiquitin ligase. Loss of Slx5-Slx8 stabilizes the sumoylated fraction, attenuates Yen1 degradation at the G1/S transition, and results in persistent localization of Yen1 in nuclear foci. Slx5-Slx8-dependent ubiquitination of Yen1 occurs mainly at K714 and mutation of this lysine increases crossover formation during DSB repair and suppresses chromosome segregation defects in a mus81∆ background.

Original languageEnglish (US)
Article number5016
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Slx5-Slx8 ubiquitin ligase targets active pools of the Yen1 nuclease to limit crossover formation'. Together they form a unique fingerprint.

Cite this