Small Molecule Fluorescent Probe

Arkady Mustaev (Inventor), David Perlin (Inventor), Laura Wirpsza (Inventor)

Research output: Innovation

Abstract

<span style="font-family: 'Arial';font-style: Normal;font-weight: normal;font-size: 18.67px;color: #000000;"> </span> <p class="Normal Caption" style="text-align: center;"> <span style="font-family: 'Arial';font-weight: normal;font-size: 13.33px;"> Sensitivity of detection method with ROC, comparison of NIR probe with conventional </span> <span style="font-family: 'Arial';font-style: Normal;font-weight: normal;font-size: 13.33px;color: #000000;"> </span> </p> <p class="Normal" style="margin-bottom: 0px;"> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> </span> <span style="font-family: 'Arial';font-weight: bold;font-size: 18.67px;"> Invention Summary: </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> Fluorophores in the near infrared (NIR) range, where body tissue is transparent, are promising alternatives to radioactive labels. Conjugation of NIR dyes to targeting agents enables specific detection of molecules of interest. However, conventional NIR probes are bulky, resulting in interference with the activity of the targeting molecule and limited cell uptake. </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> In response to these challenges, Rutgers researchers have developed a small, DDAO-derived, near infrared fluorophore that can be conjugated to a targeting agent via a linker. The targeting agent may be a drug, providing the opportunity for a theranostic platform. When the fluorophore is conjugated to a targeting agent with aromatic groups, the targeting agent quenches the fluorophore until it binds with its target. This phenomenon can greatly reduce the background emission of unbound conjugates. </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> This novel fluorophore is well-suited for both in vivo and in vitro imaging and for applications in research and diagnostics. </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> </span> <span style="font-family: 'Arial';font-weight: bold;font-size: 18.67px;"> Market Applications: </span> <span style="font-family: 'Arial';font-size: 18.67px;"> </span> </p> <ul style="list-style-type:disc"> <li class="Normal" style="margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Research tool </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Diagnostic </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Theranostics </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> In vivo molecular imaging </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Cellular analysis </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Genomics and Proteomics </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Drug discovery </span> </li> </ul> <p class="Normal" style="margin-bottom: 0px;"> <span style="font-family: 'Arial';font-weight: bold;font-size: 18.67px;"> Advantages: </span> </p> <ul style="list-style-type:disc"> <li class="Normal" style="margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Small, uncharged fluorophore </span> </li> <ul style="list-style-type:disc"> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Increased uptake by cells </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-size: 18.67px;"> Maintain targeting agent activity </span> </li> </ul> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> Emission at 660-680 nm: tissue transparent </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> pH-independent emission </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> Increased brightness </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> Low emission from unbound conjugates </span> </li> <li class="Normal" style="margin-right: 0px;margin-bottom: 0px;font-family: 'Verdana';font-style: Normal;font-weight: normal;font-size: 16px;color: #000000;" > <span style="font-family: 'Arial';font-weight: normal;font-size: 18.67px;"> Simple conjugation with targeting agents </span> </li> </ul> <p class="Normal" style="margin-bottom: 0px;"> <span style="font-family: 'Arial';font-weight: bold;font-size: 18.67px;"> Intellectual Property &amp; Development Status: </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> <br/> </span> <span style="font-family: 'Arial';font-size: 18.67px;"> Issued and pending patents. Available for licensing and/or research collaboration. </span> </p>
Original languageEnglish (US)
StatePublished - Apr 2018

Fingerprint

Fluorophores
Fluorescent Dyes
Molecules
Infrared radiation
Tissue
Molecular imaging
Intellectual property
Patents and inventions
Labels
Luminance
Coloring Agents
Imaging techniques
Pharmaceutical Preparations

Keywords

  • Research Tool

Cite this

@misc{b7d5e11abc1140eb98adf093fa5374f2,
title = "Small Molecule Fluorescent Probe",
abstract = "Sensitivity of detection method with ROC, comparison of NIR probe with conventional Invention Summary: Fluorophores in the near infrared (NIR) range, where body tissue is transparent, are promising alternatives to radioactive labels. Conjugation of NIR dyes to targeting agents enables specific detection of molecules of interest. However, conventional NIR probes are bulky, resulting in interference with the activity of the targeting molecule and limited cell uptake. In response to these challenges, Rutgers researchers have developed a small, DDAO-derived, near infrared fluorophore that can be conjugated to a targeting agent via a linker. The targeting agent may be a drug, providing the opportunity for a theranostic platform. When the fluorophore is conjugated to a targeting agent with aromatic groups, the targeting agent quenches the fluorophore until it binds with its target. This phenomenon can greatly reduce the background emission of unbound conjugates. This novel fluorophore is well-suited for both in vivo and in vitro imaging and for applications in research and diagnostics. Market Applications: Research tool Diagnostic Theranostics In vivo molecular imaging Cellular analysis Genomics and Proteomics Drug discovery Advantages: Small, uncharged fluorophore Increased uptake by cells Maintain targeting agent activity Emission at 660-680 nm: tissue transparent pH-independent emission Increased brightness Low emission from unbound conjugates Simple conjugation with targeting agents Intellectual Property & Development Status: Issued and pending patents. Available for licensing and/or research collaboration.",
keywords = "Research Tool",
author = "Arkady Mustaev and David Perlin and Laura Wirpsza",
year = "2018",
month = "4",
language = "English (US)",
type = "Patent",

}

Small Molecule Fluorescent Probe. / Mustaev, Arkady (Inventor); Perlin, David (Inventor); Wirpsza, Laura (Inventor).

Research output: Innovation

TY - PAT

T1 - Small Molecule Fluorescent Probe

AU - Mustaev, Arkady

AU - Perlin, David

AU - Wirpsza, Laura

PY - 2018/4

Y1 - 2018/4

N2 - Sensitivity of detection method with ROC, comparison of NIR probe with conventional Invention Summary: Fluorophores in the near infrared (NIR) range, where body tissue is transparent, are promising alternatives to radioactive labels. Conjugation of NIR dyes to targeting agents enables specific detection of molecules of interest. However, conventional NIR probes are bulky, resulting in interference with the activity of the targeting molecule and limited cell uptake. In response to these challenges, Rutgers researchers have developed a small, DDAO-derived, near infrared fluorophore that can be conjugated to a targeting agent via a linker. The targeting agent may be a drug, providing the opportunity for a theranostic platform. When the fluorophore is conjugated to a targeting agent with aromatic groups, the targeting agent quenches the fluorophore until it binds with its target. This phenomenon can greatly reduce the background emission of unbound conjugates. This novel fluorophore is well-suited for both in vivo and in vitro imaging and for applications in research and diagnostics. Market Applications: Research tool Diagnostic Theranostics In vivo molecular imaging Cellular analysis Genomics and Proteomics Drug discovery Advantages: Small, uncharged fluorophore Increased uptake by cells Maintain targeting agent activity Emission at 660-680 nm: tissue transparent pH-independent emission Increased brightness Low emission from unbound conjugates Simple conjugation with targeting agents Intellectual Property & Development Status: Issued and pending patents. Available for licensing and/or research collaboration.

AB - Sensitivity of detection method with ROC, comparison of NIR probe with conventional Invention Summary: Fluorophores in the near infrared (NIR) range, where body tissue is transparent, are promising alternatives to radioactive labels. Conjugation of NIR dyes to targeting agents enables specific detection of molecules of interest. However, conventional NIR probes are bulky, resulting in interference with the activity of the targeting molecule and limited cell uptake. In response to these challenges, Rutgers researchers have developed a small, DDAO-derived, near infrared fluorophore that can be conjugated to a targeting agent via a linker. The targeting agent may be a drug, providing the opportunity for a theranostic platform. When the fluorophore is conjugated to a targeting agent with aromatic groups, the targeting agent quenches the fluorophore until it binds with its target. This phenomenon can greatly reduce the background emission of unbound conjugates. This novel fluorophore is well-suited for both in vivo and in vitro imaging and for applications in research and diagnostics. Market Applications: Research tool Diagnostic Theranostics In vivo molecular imaging Cellular analysis Genomics and Proteomics Drug discovery Advantages: Small, uncharged fluorophore Increased uptake by cells Maintain targeting agent activity Emission at 660-680 nm: tissue transparent pH-independent emission Increased brightness Low emission from unbound conjugates Simple conjugation with targeting agents Intellectual Property & Development Status: Issued and pending patents. Available for licensing and/or research collaboration.

KW - Research Tool

UR - http://rutgers.technologypublisher.com/tech/Small_Molecule_Fluorescent_Probe

M3 - Innovation

ER -

Mustaev A, Perlin D, Wirpsza L, inventors. Small Molecule Fluorescent Probe. 2018 Apr.