TY - JOUR
T1 - Smooth muscle myosin inhibition
T2 - A novel therapeutic approach for pulmonary hypertension
AU - Ho, David
AU - Chen, Li
AU - Zhao, Xin
AU - Durham, Nicquanna
AU - Pannirselvam, Malar
AU - Vatner, Dorothy E.
AU - Morgans, David J.
AU - Malik, Fady I.
AU - Vatner, Stephen F.
AU - Shen, You Tang
PY - 2012/5/1
Y1 - 2012/5/1
N2 - Objective: Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension. Materials and Methods: Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 μg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline. Results: CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%). Conclusion: Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.
AB - Objective: Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension. Materials and Methods: Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 μg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline. Results: CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%). Conclusion: Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.
UR - http://www.scopus.com/inward/record.url?scp=84860459641&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860459641&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0036302
DO - 10.1371/journal.pone.0036302
M3 - Article
C2 - 22563487
AN - SCOPUS:84860459641
VL - 7
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 5
M1 - e36302
ER -