Spatial translational motions of base pairs in DNA molecules: Application of the extended matrix generator method

Nancy L. Marky, Wilma K. Olson

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


We have used the elementary generator matrices outlined in the preceding paper to examine the conformational plasticity of the nucleic acid double helix. Here we investigate kinked DNA structures made up of alternating B‐ and A‐type helices and intrinsically curved duplexes perturbed by the intercalation of ligands. We model the B‐to‐A transition by the lateral translation of adjacent base pairs, and the intercalation of ligands by the vertical displacement of neighboring residues. We report a complete set of average configuration‐dependent parameters, ranging from scalars (i.e., persistence lengths) to first‐ and second‐order tensor parameters (i.e., average second moments of inertia), as well as approximations of the associated spatial distributions of the DNA and their angular correlations. The average structures of short chains (of lengths less than 100 base pairs) with local kinks or intrinsically curved sequences are essentially rigid rods. At the smallest chain lengths (10 base pairs), the kinked and curved chains exhibit similar average properties, although they are structurally perturbed compared to the standard B‐DNA duplex. In contrast, at lengths of 200 base pairs, the curved and kinked chains are more compact on average and are located in a different space from the standard B‐ or A‐DNA helix. While A‐DNA is shorter and thicker than B‐DNA in x‐ray models, the long flexible A‐DNA helix is thinner and more extended on average than its B‐DNA counterpart because of more limited fluctuations in local structure. Curved polymers of 50 base pairs or longer also show significantly greater asymmetry than other DNAs (in terms of the distribution of base pairs with respect to the center of gravity of the chain). The intercalation of drugs in the curved DNA straightens and extends the smoothly deformed template. The dimensions of the average ellipsoidal boundaries defining the configurations of the intercalated polymers are roughly double those of the intrinsically curved chain. The altered proportions and orientations of these density functions reflect the changing shape and flexibility of the double helix. The calculations shed new light on the possible structural role of short A‐DNA fragments in long B‐type duplexes and also offer a model for understanding how GC‐specific intercalative ligands can straighten naturally curved DNA. The mechanism is not immediately obvious from current models of DNA curvature, which attribute the bending of the chain to a perturbed structure in repeating tracts of A · T base pairs. © 1994 John Wiley & Sons, Inc.

Original languageEnglish (US)
Pages (from-to)121-142
Number of pages22
Issue number1
StatePublished - Jan 1994

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Biomaterials
  • Organic Chemistry


Dive into the research topics of 'Spatial translational motions of base pairs in DNA molecules: Application of the extended matrix generator method'. Together they form a unique fingerprint.

Cite this