TY - JOUR
T1 - Spatial variability of aerosol iron mineralogy and oxidation states over the Arctic Ocean
AU - Fan, Songyun
AU - Lai, Barry
AU - Elzinga, Evert J.
AU - Ingall, Ellery D.
AU - Morton, Peter L.
AU - Gao, Yuan
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - The mineralogy and oxidation state of aerosol iron (Fe) play important roles in controlling aerosol Fe solubility and consequent bioavailability in seawater. In this study, the spatial variability of Fe mineralogy and oxidation states in aerosols collected during the US GEOTRACES Western Arctic cruise (GN01) were determined using synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy. Both Fe(II) minerals (biotite, ilmenite) and Fe(III) minerals (ferrihydrite, hematite, Fe(III) phosphate) were found in these samples. However, aerosol Fe mineralogy and solubility observed during this cruise varied spatially and can be grouped into three clusters based on the air masses that affected aerosols collected in different regions: (1) biotite-enriched particles (87 % biotite, 13 % hematite) with the air masses passing over Alaska, showing relatively low Fe solubility (4.0 ± 1.7 %); (2) ferrihydrite-enriched particles (82 % ferrihydrite, 18 % ilmenite) collected in the remote Arctic air, showing relatively high Fe solubility (9.6 ± 3.3 %); (3) the fresh dust derived from North America and Siberia, primarily dominated by hematite (41 % hematite, 25 % Fe(III) phosphate, 20 % biotite, 13 % ferrihydrite), showing relatively low Fe solubility (5.1 ± 3.5). A significant positive correlation was found between Fe oxidation state and Fe fractional solubility, suggesting that long-range transport could modify iron (hydr) oxide such as ferrihydrite through atmospheric processing, influencing aerosol Fe solubility and consequently Fe bioavailability in the remote Arctic Ocean.
AB - The mineralogy and oxidation state of aerosol iron (Fe) play important roles in controlling aerosol Fe solubility and consequent bioavailability in seawater. In this study, the spatial variability of Fe mineralogy and oxidation states in aerosols collected during the US GEOTRACES Western Arctic cruise (GN01) were determined using synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy. Both Fe(II) minerals (biotite, ilmenite) and Fe(III) minerals (ferrihydrite, hematite, Fe(III) phosphate) were found in these samples. However, aerosol Fe mineralogy and solubility observed during this cruise varied spatially and can be grouped into three clusters based on the air masses that affected aerosols collected in different regions: (1) biotite-enriched particles (87 % biotite, 13 % hematite) with the air masses passing over Alaska, showing relatively low Fe solubility (4.0 ± 1.7 %); (2) ferrihydrite-enriched particles (82 % ferrihydrite, 18 % ilmenite) collected in the remote Arctic air, showing relatively high Fe solubility (9.6 ± 3.3 %); (3) the fresh dust derived from North America and Siberia, primarily dominated by hematite (41 % hematite, 25 % Fe(III) phosphate, 20 % biotite, 13 % ferrihydrite), showing relatively low Fe solubility (5.1 ± 3.5). A significant positive correlation was found between Fe oxidation state and Fe fractional solubility, suggesting that long-range transport could modify iron (hydr) oxide such as ferrihydrite through atmospheric processing, influencing aerosol Fe solubility and consequently Fe bioavailability in the remote Arctic Ocean.
KW - Aerosol Fe mineralogy
KW - Arctic Ocean
KW - Fe oxidation states
KW - XANES
UR - http://www.scopus.com/inward/record.url?scp=85159852152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85159852152&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2023.164301
DO - 10.1016/j.scitotenv.2023.164301
M3 - Article
C2 - 37216989
AN - SCOPUS:85159852152
SN - 0048-9697
VL - 889
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 164301
ER -