TY - JOUR
T1 - Spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis
AU - Gleason, Elizabeth J.
AU - Lindsey, Wesley C.
AU - Kroft, Tim L.
AU - Singson, Andrew W.
AU - L'Hernault, Steven W.
PY - 2006/1
Y1 - 2006/1
N2 - C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC-CRD zinc-finger motif. The DHHC-CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB-MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC-CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC-CRD domain is essential for this function.
AB - C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC-CRD zinc-finger motif. The DHHC-CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB-MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC-CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC-CRD domain is essential for this function.
UR - http://www.scopus.com/inward/record.url?scp=33644764858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644764858&partnerID=8YFLogxK
U2 - 10.1534/genetics.105.047340
DO - 10.1534/genetics.105.047340
M3 - Article
C2 - 16143610
AN - SCOPUS:33644764858
SN - 0016-6731
VL - 172
SP - 145
EP - 158
JO - Genetics
JF - Genetics
IS - 1
ER -