Abstract
A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm (F*2) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F*2. The brightness of the light sources is estimated to be of the order of several W cm-2 sr-1. With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future.
Original language | English (US) |
---|---|
Pages (from-to) | 180-184 |
Number of pages | 5 |
Journal | Journal of Physics D: Applied Physics |
Volume | 37 |
Issue number | 2 |
DOIs | |
State | Published - Jan 21 2004 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films