TY - JOUR
T1 - Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages
AU - Koo, Mi Sun
AU - Subbian, Selvakumar
AU - Kaplan, Gilla
N1 - Funding Information:
We thank Drs. Dorothy Fallows, Claudia Manca and Jilian Sacks for useful suggestions and Sabrina Dalton for help with the preparation of the manuscript. We acknowledge the staff at the Center for Applied Genomics (CAG) of the Public Health Research Institute (PHRI) for assistance with the microarray experiments. This study was supported by a grant from the NIH (RO1 AI054338 to GK) and a TB drug accelerator grant from the Bill & Melinda Gates Foundation to GK.
PY - 2012
Y1 - 2012
N2 - Background: Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb) remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results: In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions: In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a dysregulated host cell lipid metabolism favored a less stressful intracellular environment for HN878. Our findings suggest that the ability of CDC1551 and HN878 to differentially activate macrophages during infection probably determines their ability to either resist host cell immunity and progress to active disease or to succumb to the host protective responses and be driven into a non-replicating latent state in rabbit lungs.
AB - Background: Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb) remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results: In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions: In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a dysregulated host cell lipid metabolism favored a less stressful intracellular environment for HN878. Our findings suggest that the ability of CDC1551 and HN878 to differentially activate macrophages during infection probably determines their ability to either resist host cell immunity and progress to active disease or to succumb to the host protective responses and be driven into a non-replicating latent state in rabbit lungs.
KW - Bone marrow-derived macrophage
KW - Gene expression
KW - Global transcriptome
KW - Host-pathogen interaction
KW - Immune response
KW - Intracellular stress response
KW - Lipid metabolism
KW - Macrophage activation pathway
KW - Mycobacterium tuberculosis
KW - Tuberculosis
UR - http://www.scopus.com/inward/record.url?scp=84863213626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863213626&partnerID=8YFLogxK
U2 - 10.1186/1478-811X-10-2
DO - 10.1186/1478-811X-10-2
M3 - Article
C2 - 22280836
AN - SCOPUS:84863213626
SN - 1478-811X
VL - 10
JO - Cell Communication and Signaling
JF - Cell Communication and Signaling
M1 - 2
ER -