Strange-metal behaviour in a pure ferromagnetic Kondo lattice

Bin Shen, Yongjun Zhang, Yashar Komijani, Michael Nicklas, Robert Borth, An Wang, Ye Chen, Zhiyong Nie, Rui Li, Xin Lu, Hanoh Lee, Michael Smidman, Frank Steglich, Piers Coleman, Huiqiu Yuan

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

A wide range of metals exhibit anomalous electrical and thermodynamic properties when tuned to a quantum critical point (QCP), although the origins of such strange metals have posed a long-standing mystery. The frequent association of strange metals with unconventional superconductivity and antiferromagnetic QCPs1–4 has led to the belief that they are highly entangled quantum states5. By contrast, ferromagnets are regarded as an unlikely setting for strange metals, because they are weakly entangled and their QCPs are often interrupted by competing phases or first-order phase transitions6–8. Here we provide evidence that the pure ferromagnetic Kondo lattice9,10 CeRh6Ge4 becomes a strange metal at a pressure-induced QCP. Measurements of the specific heat and resistivity under pressure demonstrate that the ferromagnetic transition is continuously suppressed to zero temperature, revealing a strange-metal behaviour around the QCP. We argue that strong magnetic anisotropy has a key role in this process, injecting entanglement in the form of triplet resonating valence bonds into the ordered ferromagnet. We show that a singular transformation in the patterns of the entanglement between local moments and conduction electrons, from triplet resonating valence bonds to Kondo-entangled singlet pairs at the QCP, causes a jump in the Fermi surface volume—a key driver of strange-metallic behaviour. Our results open up a direction for research into ferromagnetic quantum criticality and establish an alternative setting for the strange-metal phenomenon. Most importantly, strange-metal behaviour at a ferromagnetic QCP suggests that quantum entanglement—not the destruction of antiferromagnetism—is the common driver of the varied behaviours of strange metals.

Original languageEnglish (US)
Pages (from-to)51-55
Number of pages5
JournalNature
Volume579
Issue number7797
DOIs
StatePublished - Mar 5 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Strange-metal behaviour in a pure ferromagnetic Kondo lattice'. Together they form a unique fingerprint.

Cite this