Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides

Michal Szostak, Brice Sautier, David J. Procter

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Structural characterisation and reactivity of new tetrahedral intermediates based on a highly modular barbituric acid scaffold, formed via chemoselective electron transfer using the SmI2–H2O reagent, are reported. Lewis acid promoted cleavage of bicyclic α-amino alcohols affords vinylogous N-acyliminium ions, which undergo selective (>95 : 5, 1,4 over 1,2) capture with a suite of diverse nucleophiles in a practical sequence to biologically active uracil derivatives.

Original languageEnglish (US)
Pages (from-to)2518-2521
Number of pages4
JournalChemical Communications
Volume50
Issue number19
DOIs
StatePublished - Feb 7 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • General Chemistry
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Structural analysis and reactivity of unusual tetrahedral intermediates enabled by SmI2-mediated reduction of barbituric acids: vinylogous N-acyliminium additions to α-hydroxy-N-acyl-carbamides'. Together they form a unique fingerprint.

Cite this