TY - JOUR
T1 - Structural variation in bacterial glyoxalase I enzymes
T2 - Investigation of the metalloenzyme glyoxalase I from clostridium acetobutylicum
AU - Suttisansanee, Uthaiwan
AU - Lau, Kelvin
AU - Lagishetty, Satyanarayana
AU - Rao, Krishnamurthy N.
AU - Swaminathan, Subramanyam
AU - Sauder, J. Michael
AU - Burley, Stephen K.
AU - Honek, John F.
PY - 2011/11/4
Y1 - 2011/11/4
N2 - The glyoxalase system catalyzes the conversion of toxic, metabolically produced α-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn 2+ and non-Zn 2+ activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Grampositive bacteria that has been fully characterized as to its threedimensional structure and its detailed metal specificity. It is a Ni 2+/Co 2+-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn 2+-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.
AB - The glyoxalase system catalyzes the conversion of toxic, metabolically produced α-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn 2+ and non-Zn 2+ activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Grampositive bacteria that has been fully characterized as to its threedimensional structure and its detailed metal specificity. It is a Ni 2+/Co 2+-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn 2+-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.
UR - http://www.scopus.com/inward/record.url?scp=80055069623&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80055069623&partnerID=8YFLogxK
U2 - 10.1074/jbc.M111.251603
DO - 10.1074/jbc.M111.251603
M3 - Article
C2 - 21914803
AN - SCOPUS:80055069623
VL - 286
SP - 38367
EP - 38374
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 44
ER -