@article{51e387d14f1844d0bfbd21e302ec5b6a,
title = "Structure-based design of bitopic ligands for the µ-opioid receptor",
abstract = "Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment—one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.",
author = "Abdelfattah Faouzi and Haoqing Wang and Zaidi, {Saheem A.} and DiBerto, {Jeffrey F.} and Tao Che and Qianhui Qu and Robertson, {Michael J.} and Madasu, {Manish K.} and {El Daibani}, Amal and Varga, {Balazs R.} and Tiffany Zhang and Claudia Ruiz and Shan Liu and Jin Xu and Kevin Appourchaux and Slocum, {Samuel T.} and Eans, {Shainnel O.} and Cameron, {Michael D.} and Ream Al-Hasani and Pan, {Ying Xian} and Roth, {Bryan L.} and McLaughlin, {Jay P.} and Georgios Skiniotis and Vsevolod Katritch and Kobilka, {Brian K.} and Susruta Majumdar",
note = "Funding Information: This work was supported by an American Heart Association Postdoctoral Fellowship (H.W.), NIH grants R33045884 (S.M.), R01DA042888 and R01DA007242 (Y.X.P.), R37DA036246 (B.K.K. and G.S.), R33DA038858 and P01DA035764 (V.K.), and R21DA048650 and R00DA038725 (R.A.-H.). B.K.K. and G.S. are additionally supported by the Mathers Foundation and R.A.-H. is supported through the Brain and Behavior Research Foundation. The State of Florida, Executive Office of the Governor{\textquoteright}s Office of Tourism, Trade, and Economic Development provides funding to J.P.M. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 to MSKCC. Cryo-EM data collection was performed at the Stanford-SLAC Cryo-EM Facilities, supported by Stanford University, SLAC and the National Institutes of Health S10 Instrumentation Programs. The authors thank E. Montabana and C. Zhang for their support with cryo-EM data collection; and Stanford University and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results. Cryo-EM data processing for this project was performed on the Sherlock cluster. The authors acknowledge the Center for Advanced Research Computing (CARC) at the University of Southern California for providing computing resources that have contributed to the research results reported in this study. Receptor binding profiles were generously provided by the National Institute of Mental Health{\textquoteright}s Psychoactive Drug Screening Program (NIMH PDSP), contract no. HHSN-271-2018-00023-C. B.L.R. is director of NIMH PDSP at the University of North Carolina at Chapel Hill and J.D. is project officer of NIMH PDSP at NIMH, Bethesda. Funding Information: This work was supported by an American Heart Association Postdoctoral Fellowship (H.W.), NIH grants R33045884 (S.M.), R01DA042888 and R01DA007242 (Y.X.P.), R37DA036246 (B.K.K. and G.S.), R33DA038858 and P01DA035764 (V.K.), and R21DA048650 and R00DA038725 (R.A.-H.). B.K.K. and G.S. are additionally supported by the Mathers Foundation and R.A.-H. is supported through the Brain and Behavior Research Foundation. The State of Florida, Executive Office of the Governor{\textquoteright}s Office of Tourism, Trade, and Economic Development provides funding to J.P.M. This research was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 to MSKCC. Cryo-EM data collection was performed at the Stanford-SLAC Cryo-EM Facilities, supported by Stanford University, SLAC and the National Institutes of Health S10 Instrumentation Programs. The authors thank E. Montabana and C. Zhang for their support with cryo-EM data collection; and Stanford University and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results. Cryo-EM data processing for this project was performed on the Sherlock cluster. The authors acknowledge the Center for Advanced Research Computing (CARC) at the University of Southern California for providing computing resources that have contributed to the research results reported in this study. Receptor binding profiles were generously provided by the National Institute of Mental Health{\textquoteright}s Psychoactive Drug Screening Program (NIMH PDSP), contract no. HHSN-271-2018-00023-C. B.L.R. is director of NIMH PDSP at the University of North Carolina at Chapel Hill and J.D. is project officer of NIMH PDSP at NIMH, Bethesda. Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive licence to Springer Nature Limited.",
year = "2023",
month = jan,
day = "26",
doi = "10.1038/s41586-022-05588-y",
language = "English (US)",
volume = "613",
pages = "767--774",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7945",
}