Subpicosecond Molecular Rearrangements Affect Local Electric Fields and Auto-Dissociation in Water

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Molecular simulations of auto-dissociation of water molecules in an 81,000 atom bulk water system show that the electric field variations caused by local bond length and angle variations enhance proton transfer within ∼600 fs prior to auto-dissociation. In this paper, auto-dissociation relates to the initial separation of a proton from a water molecule to another, forming the H33O+ and OH- ions. Only transfers for which a proton’s initial nearest covalently bonded oxygen remained the same for at least 1 ps prior to the transfer and for which that proton’s new nearest acceptor oxygen remained the same for at least 1 ps after the transfer were evaluated. Electric fields from solvent atoms within 6 Å of a transferring proton (H*) are dominant, with little contribution from farther molecules. However, exclusion of the accepting oxygen in such electric field calculations shows that the field on H* from the other solvent atoms weakens as the time to transfer becomes less than 600 fs, indicating the primary importance of the accepting oxygen on enabling auto-dissociation. All resultant OH- and H3O+ ion pairs recombined at times greater than 1 ps after auto-dissociation. A concentration of 8.01 × 1017 cm-3 for these ion pairs was observed. The simulations indicate that transient auto-dissociation in water is more common than that inferred from dc-conductivity experiments (10-5 vs 10-7) and is consistent with the results of calculations that include nuclear quantum effects. The conductivity experiments require the rearrangement of farther water molecules to form hydrogen-bonded “water wires” that afford long-range and measurable proton transport away from the reaction site. Nonetheless, the relatively large number of picosecond-lived auto-dissociation products might be engineered within 2D layers and oriented external fields to offer new energy-related systems.

Original languageEnglish (US)
Pages (from-to)3392-3401
Number of pages10
JournalJournal of Physical Chemistry B
Volume127
Issue number15
DOIs
StatePublished - Apr 20 2023

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Subpicosecond Molecular Rearrangements Affect Local Electric Fields and Auto-Dissociation in Water'. Together they form a unique fingerprint.

Cite this