TY - JOUR
T1 - Sulfur Mustard Analog Mechlorethamine (Bis(2-chloroethyl)methylamine) Modulates Cell Cycle Progression via the DNA Damage Response in Human Lung Epithelial A549 Cells
AU - Jan, Yi Hua
AU - Heck, DIane E.
AU - Laskin, Debra L.
AU - Laskin, Jeffrey D.
N1 - Funding Information:
*E-mail: jlaskin@eohsi.rutgers.edu. Phone: 848-445-0170. Fax: 732-445-0119. ORCID Jeffrey D. Laskin: 0000-0003-1603-7388 Funding This work was supported by NIH grants AR055073, NS079249, NS108956, ES004738, and ES005022. Notes The authors declare no competing financial interest.
Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/6/17
Y1 - 2019/6/17
N2 - Nitrogen mustard, mechlorethamine (bis(2-chloroethyl)methylamine; HN2), and sulfur mustard are potent vesicants that modify and disrupt cellular macromolecules including DNA leading to cytotoxicity and tissue injury. In many cell types, HN2 upregulates DNA damage signaling pathways including ataxia telangiectasia mutated (ATM), ataxia telangiectasia mutated- and Rad3-related (ATR) as well as DNA-dependent protein kinase (DNA-PK). In the present studies, we investigated crosstalk between the HN2-induced DNA damage response and cell cycle progression using human A549 lung epithelial cells. HN2 (1-20 μM; 24 h) caused a concentration-dependent arrest of cells in the S and G2/M phases of the cell cycle. This was associated with inhibition of DNA synthesis, as measured by incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into S phase cells. Cell cycle arrest was correlated with activation of DNA damage and cell cycle checkpoint signaling. Thus, HN2 treatment resulted in time- and concentration-dependent increases in expression of phosphorylated ATM (Ser1981), Chk2 (Thr68), H2AX (Ser139), and p53 (Ser15). Activation of DNA damage signaling was most pronounced in S-phase cells followed by G2/M-phase cells. HN2-induced cell cycle arrest was suppressed by the ATM and DNA-PK inhibitors, KU55933 and NU7441, respectively, and to a lesser extent by VE821, an ATR inhibitor. This was correlated with abrogation of DNA damage checkpoints signaling. These data indicate that activation of ATM, ATR, and DNA-PK signaling pathways by HN2 are important in the mechanism of vesicant-induced cell cycle arrest and cytotoxicity. Drugs that inhibit activation of DNA damage signaling may be effective countermeasures for vesicant-induced tissue injury.
AB - Nitrogen mustard, mechlorethamine (bis(2-chloroethyl)methylamine; HN2), and sulfur mustard are potent vesicants that modify and disrupt cellular macromolecules including DNA leading to cytotoxicity and tissue injury. In many cell types, HN2 upregulates DNA damage signaling pathways including ataxia telangiectasia mutated (ATM), ataxia telangiectasia mutated- and Rad3-related (ATR) as well as DNA-dependent protein kinase (DNA-PK). In the present studies, we investigated crosstalk between the HN2-induced DNA damage response and cell cycle progression using human A549 lung epithelial cells. HN2 (1-20 μM; 24 h) caused a concentration-dependent arrest of cells in the S and G2/M phases of the cell cycle. This was associated with inhibition of DNA synthesis, as measured by incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into S phase cells. Cell cycle arrest was correlated with activation of DNA damage and cell cycle checkpoint signaling. Thus, HN2 treatment resulted in time- and concentration-dependent increases in expression of phosphorylated ATM (Ser1981), Chk2 (Thr68), H2AX (Ser139), and p53 (Ser15). Activation of DNA damage signaling was most pronounced in S-phase cells followed by G2/M-phase cells. HN2-induced cell cycle arrest was suppressed by the ATM and DNA-PK inhibitors, KU55933 and NU7441, respectively, and to a lesser extent by VE821, an ATR inhibitor. This was correlated with abrogation of DNA damage checkpoints signaling. These data indicate that activation of ATM, ATR, and DNA-PK signaling pathways by HN2 are important in the mechanism of vesicant-induced cell cycle arrest and cytotoxicity. Drugs that inhibit activation of DNA damage signaling may be effective countermeasures for vesicant-induced tissue injury.
UR - http://www.scopus.com/inward/record.url?scp=85065103360&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065103360&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrestox.8b00417
DO - 10.1021/acs.chemrestox.8b00417
M3 - Article
C2 - 30964658
AN - SCOPUS:85065103360
SN - 0893-228X
VL - 32
SP - 1123
EP - 1133
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 6
ER -