Sulphydryl groups in the template-primer-binding domain of murine leukaemia virus reverse transcriptase: Identification and functional analysis of cysteine-90

S. Basu, A. Basu, M. J. Modak

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Treatment of murine leukaemia virus reverse transcriptase with benzophenone 4-maleimide inactivates DNA polymerase activity, but has no effect on the RNAase H function. Kinetic measurements indicated that benzophenone 4-maleimide is a competitive inhibitor with respect to template-primer binding, but is non-competitive with respect to dNTP binding. Enzyme modified with benzophenone 4-maleimide cannot bind template-primer or primer alone, as judged by u.v.-mediated cross-linking of radiolabelled substrates. Of the eight cysteine residues in murine leukaemia virus reverse transcriptase, only two were modified by benzophenone 4-maleimide, which were identified as Cys-90 and Cys-310 by comparative tryptic-peptide mapping and amino acid composition analysis. Inclusion of template primer or primer alone in the modification mixture protected only Cys-90 from modification by benzophenone 4-maleimide. To investigate the role of Cys-90 in detail, we converted it to alanine by site-directed mutagenesis. The mutant enzyme, however, exhibited no loss either of DNA polymerase or of RNAase H activity. These results indicate that Cys-90 is located in a domain of murine leukaemia virus reverse transcriptase that binds template-primer, but may not have a direct role in the enzymic function of the enzyme. Ala-90 mutant murine leukaemia virus reverse transcriptase is at least 10-fold more susceptible to heat inactivation than is the wild-type enzyme, which suggests that Cys-90 in murine leukaemia virus reverse transcriptase may play a role in maintaining structural integrity.

Original languageEnglish (US)
Pages (from-to)577-583
Number of pages7
JournalBiochemical Journal
Volume296
Issue number3
DOIs
StatePublished - 1993

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Sulphydryl groups in the template-primer-binding domain of murine leukaemia virus reverse transcriptase: Identification and functional analysis of cysteine-90'. Together they form a unique fingerprint.

Cite this