Sum rules and Ward identities in the Kondo lattice

P. Coleman, I. Paul, J. Rech

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


We derive a generalized Luttinger-Ward expression for the free energy of a many-body system involving a constrained Hilbert space. In the large-N limit, we are able to explicitly write the entropy as a functional of the Green's functions. Using this method we obtain a Luttinger sum rule for the Kondo lattice. One of the fascinating aspects of the sum rule is that it contains two components: one describing the heavy electron Fermi surface, the other, a sea of oppositely charged, spinless fermions. In the heavy electron state, this sea of spinless fermions is completely filled and the electron Fermi surface expands by one electron per unit cell to compensate the positively charged background, forming a "large" Fermi surface. Arbitrarily weak magnetism causes the spinless Fermi sea to annihilate with part of the Fermi sea of the conduction electrons, leading to a small Fermi surface. Our results thus enable us to show that the Fermi surface volume contracts from a large to a small volume at a quantum critical point. However, the sum rules also permit the possible formation of a new phase, sandwiched between the antiferromagnet and the heavy electron phase, where the charged spinless fermions develop a true Fermi surface.

Original languageEnglish (US)
Article number094430
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number9
StatePublished - Sep 1 2005

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Sum rules and Ward identities in the Kondo lattice'. Together they form a unique fingerprint.

Cite this