Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery

Mahesh L. Patil, Min Zhang, Seema Betigeri, Oleh Taratula, Huixin He, Tamara Minko

Research output: Contribution to journalArticlepeer-review

203 Scopus citations

Abstract

A novel internally quaternized and surface-acetylated poly(amidoamine) generation four dendrimer (QPAMAM-NHAc) was synthesized and evaluated for intracellular delivery of siRNA. The proposed dendrimer as a nanocarrier possesses the following advantages: (1) modified neutral surface of the dendrimer for low cytotoxicity and enhanced cellular internalization; (2) existence of cationic charges inside the dendrimer (not on the outer surface) resulting in highly organized compact nanoparticles, which can potentially protect nucleic acids from degradation. The properties of this dendrimer were compared with PAMAM-NH2 dendrimer, possessing surface charges, and with an internally quaternized charged and hydroxyl-terminated QPAMAM-OH dendrimer. Atomic force microscopy studies revealed that internally charged and surface neutral dendrimers, QPAMAM-OH and QPAMAM-NHAc, formed well-condensed, spherical particles (polyplexes) with siRNA, while PAMAM-NH2 resulted in the formation of nanofibers. The modification of surface amine groups to amide significantly reduced cytotoxicity of dendrimers with QPAMAM-NHAc dendrimer showing the lowest toxicity. Confocal microscopy demonstrated enhanced cellular uptake and homogeneous intracellular distribution of siRNA delivered by the proposed QPAMAM-NHAc nanocarrier. The results clearly demonstrated distinct advantages of developed QPAMAM-NHAc/siRNA polyplexes over the existing nucleic acid dendrimeric carriers.

Original languageEnglish (US)
Pages (from-to)1396-1403
Number of pages8
JournalBioconjugate Chemistry
Volume19
Issue number7
DOIs
StatePublished - Jul 2008

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery'. Together they form a unique fingerprint.

Cite this