TY - JOUR
T1 - Synthesis, Characterization, and DNA-Binding Kinetics of New Pd(II) and Pt(II) Thiosemicarbazone Complexes
T2 - Spectral, Structural, and Anticancer Evaluation
AU - Mbugua, Simon N.
AU - Njenga, Lydia W.
AU - Odhiambo, Ruth A.
AU - Wandiga, Shem O.
AU - Meyer, Mervin
AU - Sibuyi, Nicole
AU - Lalancette, Roger A.
AU - Onani, Martin O.
N1 - Funding Information:
The authors acknowledge the support of the International Science Program (ISP) under KEN-01 Project for the funding and NRF, South Africa. The authors thank the Department of Chemistry, University of Nairobi, for support and guidance in this work and the Department of Chemistry and the Department of Biotechnology, University of the Western Cape (UWC), South Africa, where most of this work was carried out.
Publisher Copyright:
© 2020 Simon N. Mbugua et al.
PY - 2020
Y1 - 2020
N2 - In a bid to come up with potential anticancer agents, a class of thiosemicarbazone ligands bearing substituted thiophene were synthesized followed by complexation with various Pd(II) and Pt(II) metal precursors. The ligands (E)-1-((thiophen-2-yl)methylene)thiosemicarbazide (L1), (E)-1-((4-bromothiophen-2-yl)methylene)thiosemicarbazide (L2), and (E)-1-((5-bromothiophen-2-yl)methylene)thiosemicarbazide (L3) were synthesized by condensation reactions and obtained in good yields. Complexation of L1 and L2 with Pd(cod)Cl2 gave C1 (C6H7Cl2N3PdS2) and C2 (C6H6BrCl2N3PdS2), respectively. Complexation of L1 with K2PtCl4 gave C3 (C6H7Cl2N3PtS2), while L3 with K2PtCl2[(PPh)3]2 gave C4 (C24H21BrClN3PPtS2). The structures and coordination for all compounds were established by FTIR, 1H-NMR, 13C-NMR, UV-Vis, elemental analysis, and single-crystal X-ray diffraction studies for ligand L1. Tuning of the spectral and anticancer activity of the compounds was investigated by changing the position of the bromide substituent, metal center, and the σ or π-donor/acceptor strength of the groups surrounding the metal center. The compounds had low to moderate anticancer potency with their spectral and structural properties correlating with the corresponding anticancer activity profiles. DNA binding modes were studied by spectroscopy and were comparable to known DNA intercalators. Structure-activity profiles were evident especially between C1 and C2 differing by the presence of a Br in position 5 of thiophene ring, which caused a remarkable increase in IC50 values, from 14.71 ± 0.016 (C1) to 43.08 ± 0.001(C2) in Caco-2 cells, 1.973 ± 0.048 (C1) to 59.56 ± 0.010 (C2) in MCF-7 cells, 16.65 ± 0.051 (C1) to 72.25 ± 0.003 (C2) in HeLa cells, 14.64 ± 0.037 (C1) to 94.34 ± 0.003 (C2) in HepG2, and 14.05 ± 0.042 (C1) to >100(C2) in PC-3 cells.
AB - In a bid to come up with potential anticancer agents, a class of thiosemicarbazone ligands bearing substituted thiophene were synthesized followed by complexation with various Pd(II) and Pt(II) metal precursors. The ligands (E)-1-((thiophen-2-yl)methylene)thiosemicarbazide (L1), (E)-1-((4-bromothiophen-2-yl)methylene)thiosemicarbazide (L2), and (E)-1-((5-bromothiophen-2-yl)methylene)thiosemicarbazide (L3) were synthesized by condensation reactions and obtained in good yields. Complexation of L1 and L2 with Pd(cod)Cl2 gave C1 (C6H7Cl2N3PdS2) and C2 (C6H6BrCl2N3PdS2), respectively. Complexation of L1 with K2PtCl4 gave C3 (C6H7Cl2N3PtS2), while L3 with K2PtCl2[(PPh)3]2 gave C4 (C24H21BrClN3PPtS2). The structures and coordination for all compounds were established by FTIR, 1H-NMR, 13C-NMR, UV-Vis, elemental analysis, and single-crystal X-ray diffraction studies for ligand L1. Tuning of the spectral and anticancer activity of the compounds was investigated by changing the position of the bromide substituent, metal center, and the σ or π-donor/acceptor strength of the groups surrounding the metal center. The compounds had low to moderate anticancer potency with their spectral and structural properties correlating with the corresponding anticancer activity profiles. DNA binding modes were studied by spectroscopy and were comparable to known DNA intercalators. Structure-activity profiles were evident especially between C1 and C2 differing by the presence of a Br in position 5 of thiophene ring, which caused a remarkable increase in IC50 values, from 14.71 ± 0.016 (C1) to 43.08 ± 0.001(C2) in Caco-2 cells, 1.973 ± 0.048 (C1) to 59.56 ± 0.010 (C2) in MCF-7 cells, 16.65 ± 0.051 (C1) to 72.25 ± 0.003 (C2) in HeLa cells, 14.64 ± 0.037 (C1) to 94.34 ± 0.003 (C2) in HepG2, and 14.05 ± 0.042 (C1) to >100(C2) in PC-3 cells.
UR - http://www.scopus.com/inward/record.url?scp=85087938781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087938781&partnerID=8YFLogxK
U2 - 10.1155/2020/3863269
DO - 10.1155/2020/3863269
M3 - Article
AN - SCOPUS:85087938781
SN - 2090-9063
VL - 2020
JO - E-Journal of Chemistry
JF - E-Journal of Chemistry
M1 - 3863269
ER -