Talent Demand Forecasting with Attentive Neural Sequential Model

Qi Zhang, Hengshu Zhu, Ying Sun, Hao Liu, Fuzhen Zhuang, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

To cope with the fast-evolving business trend, it becomes critical for companies to continuously review their talent recruitment strategies by the timely forecast of talent demand in recruitment market. While many efforts have been made on recruitment market analysis, due to the sparsity of fine-grained talent demand time series and the complex temporal correlation of the recruitment market, there is still no effective approach for fine-grained talent demand forecast, which can quantitatively model the dynamics of the recruitment market. To this end, in this paper, we propose a data-driven neural sequential approach, namely Talent Demand Attention Network (TDAN), for forecasting fine-grained talent demand in the recruitment market. Specifically, we first propose to augment the univariate time series of talent demand at multiple grained levels and extract intrinsic attributes of both companies and job positions with matrix factorization techniques. Then, we design a Mixed Input Attention module to capture company trends and industry trends to alleviate the sparsity of fine-grained talent demand. Meanwhile, we design a Relation Temporal Attention module for modeling the complex temporal correlation that changes with the company and position. Finally, extensive experiments on a real-world recruitment dataset clearly validate the effectiveness of our approach for fine-grained talent demand forecast, as well as its interpretability for modeling recruitment trends. In particular, TDAN has been deployed as an important functional component of intelligent recruitment system of cooperative partner.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages3906-3916
Number of pages11
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • attention mechanism
  • neural sequential model
  • recruitment market
  • talent demand forecast

Fingerprint

Dive into the research topics of 'Talent Demand Forecasting with Attentive Neural Sequential Model'. Together they form a unique fingerprint.

Cite this