Abstract
Human immunodeficiency virus type I (HIV-1) is a retrovirus that infects cells of the host’s immune system leading to acquired immunodeficiency syndrome and potentially death. Although treatments are available to prevent its progression, HIV-1 remains a major burden on health resources worldwide. Continued emergence of drug-resistance mutations drives the need for novel drugs that can inhibit HIV-1 replication through new pathways. The viral protein reverse transcriptase (RT) plays a fundamental role in the HIV-1 replication cycle, and multiple approved medications target this enzyme. In this study, fragment-based drug discovery was used to optimize a previously identified hit fragment (compound B-1), which bound RT at a novel site. Three series of compounds were synthesized and evaluated for their HIV-1 RT binding and inhibition. These series were designed to investigate different vectors around the initial hit in an attempt to improve inhibitory activity against RT. Our results show that the 4-position of the core scaffold is important for binding of the fragment to RT, and a lead compound with a cyclopropyl substitution was selected and further investigated. Requirements for binding to the NNRTI-binding pocket (NNIBP) and a novel adjacent site were investigated, with lead compound 27—a minimal but efficient NNRTI—offering a starting site for the development of novel dual NNIBP-Adjacent site inhibitors.
Original language | English (US) |
---|---|
Article number | 3103 |
Journal | Molecules |
Volume | 28 |
Issue number | 7 |
DOIs | |
State | Published - Apr 2023 |
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery
- Physical and Theoretical Chemistry
- Organic Chemistry
Keywords
- HIV-1
- drug discovery
- fragment-based drug design
- non-nucleoside reverse transcriptase inhibitors (NNRTIs)
- reverse transcriptase