Abstract
Four years of sustained glider observations are used to compute the seasonal cycle of hydrographic fields in the central Middle Atlantic Bight (MAB). Results reveal a large phase lag in near bottom temperatures, with peak values occurring in September at the inner shelf, in October at the mid shelf, and in November at the outer shelf. Unlike the northern MAB, the seasonal cycle explains over 70% of the near-surface salinity variability. At the inner shelf and offshore near the bottom, however, most of the variance is due to pulses in river discharge and to shifts in the position of the shelfbreak front. Cross-shelf density gradients inshore of the 60-m isobath are dominated by salinity during winter and spring, with temperature contributing significantly from August to October. This is because bottom waters near the coast are warm due to the deepening of the thermocline during fall, but offshore waters are still influenced by the cold pool. The vertical stratification seasonal variability is also large. Early in the year, stratification is small and entirely due to salinity. By May, salinity still dominates vertical gradients near the coast, but temperature and salinity contribute equally to the density stratification offshore. During summer, stratification is dominated by temperature. Temperature interannual variability was small during the sampling period, but surface salinity was anomalously low by 1.2 psu in summer 2006. The anomaly was due to larger than average discharge from the Hudson River in early summer during a period of strong upwelling favorable winds.
Original language | English (US) |
---|---|
Article number | C10005 |
Journal | Journal of Geophysical Research: Oceans |
Volume | 115 |
Issue number | 10 |
DOIs | |
State | Published - 2010 |
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology
- Geophysics
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Oceanography