TY - JOUR
T1 - Temporal and spatial variability in fall storm induced sediment resuspension on the Mid-Atlantic Bight
AU - Miles, Travis
AU - Glenn, Scott M.
AU - Schofield, Oscar
N1 - Funding Information:
Data used in this study was acquired by the Rutgers University Coastal Ocean Observation Lab (R.U.COOL) and NOAA. R.U.COOL is supported by ONR, NOAA, IOOS, NSF, DHS, DoD, NASA, NOPP and the State of New Jersey. Glider data for this study came from a deployment for the NSF Ocean Observing Initiative as part of a Cyber Infrastructure Implementing Organization testbedding activity. We would also like to thank Teledyne-Webb Research for graduate student support and continued technical support. The Mid-Atlantic Bight High Frequency Radar network is funded by IOOS. This work was supported by ONR MURI grant number N000140610739 , NOAA MARCOOS grant numbers NA07NOS4730221 and NA01NOS4730014 and NSF OOI NSF OCE 10307201 1/1 .
PY - 2013/7/5
Y1 - 2013/7/5
N2 - Storm-driven sediment resuspension is an episodic process that is an important constraint on sediment transport on continental shelves; unfortunately, the spatial variability of the resuspension and transport processes are poorly quantified using traditional sampling techniques. Using two autonomous underwater gliders, long-range high frequency radar and buoy data, we quantified spatial variability of sediment resuspension and transport in a large fall storm in November of 2009. Wave, wind and current data in conjunction with glider profiles showed that waves and winds mixed the water column, waves initially mobilized the sediment and shear induced turbulence advected sediment throughout the water column. The separation of over 50. km between the two gliders (RU05 and RU21) is used to highlight the spatial variability of sediment resuspension. Both gliders were operating along the 40. m isobath with RU21 located 50. km north of RU05. Sediment resuspension on the New Jersey (NJ) shelf responded to synoptically forced turbulent motions. Currents transported this sediment toward the southwest in the along-shelf axis and onshore on the cross-shelf axis during the peak resuspension on November 13th through November 14th, with resuspension and transport on the southern NJ shelf measured by RU05 approximately twice that of RU21 on the northern MAB. Variability in resuspension profiles between the two gliders was largely a product of smaller mean grain sizes on the southern portion of the NJ shelf. These smaller grain sediment particles had a reduced fall velocity and were more easily retained throughout the water column by turbulent motions.
AB - Storm-driven sediment resuspension is an episodic process that is an important constraint on sediment transport on continental shelves; unfortunately, the spatial variability of the resuspension and transport processes are poorly quantified using traditional sampling techniques. Using two autonomous underwater gliders, long-range high frequency radar and buoy data, we quantified spatial variability of sediment resuspension and transport in a large fall storm in November of 2009. Wave, wind and current data in conjunction with glider profiles showed that waves and winds mixed the water column, waves initially mobilized the sediment and shear induced turbulence advected sediment throughout the water column. The separation of over 50. km between the two gliders (RU05 and RU21) is used to highlight the spatial variability of sediment resuspension. Both gliders were operating along the 40. m isobath with RU21 located 50. km north of RU05. Sediment resuspension on the New Jersey (NJ) shelf responded to synoptically forced turbulent motions. Currents transported this sediment toward the southwest in the along-shelf axis and onshore on the cross-shelf axis during the peak resuspension on November 13th through November 14th, with resuspension and transport on the southern NJ shelf measured by RU05 approximately twice that of RU21 on the northern MAB. Variability in resuspension profiles between the two gliders was largely a product of smaller mean grain sizes on the southern portion of the NJ shelf. These smaller grain sediment particles had a reduced fall velocity and were more easily retained throughout the water column by turbulent motions.
KW - Autonomous underwater vehicles
KW - Coastal oceanography
KW - Ocean observing systems
KW - Sediment resuspension
KW - Sediment transport
KW - Turbulence
UR - http://www.scopus.com/inward/record.url?scp=84880714329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880714329&partnerID=8YFLogxK
U2 - 10.1016/j.csr.2012.08.006
DO - 10.1016/j.csr.2012.08.006
M3 - Article
AN - SCOPUS:84880714329
VL - 63
SP - S36-S49
JO - Continental Shelf Research
JF - Continental Shelf Research
SN - 0278-4343
ER -