Tenascin demarcates the boundary between the myelinated and nonmyelinated part of retinal ganglion cell axons in the developing and adult mouse

Udo Bartsch, Andreas Faissner, Jacqueline Trotter, Ulrich Dörries, Susanne Bartsch, Hasan Mohajeri, Melitta Schachner

Research output: Contribution to journalArticle

84 Scopus citations

Abstract

The molecular determinants controlling the topographically restricted distribution of neural cells in the mammalian CNS are largely unknown. In the mouse, myelin-forming oligodendrocytes are differentially distributed along retinal ganglion cell axons. These axons are myelin free intraretinally and in the most proximal (i.e., retinal) part of the optic nerve, but become myelinated in the distal (i.e., chiasmal) part of the optic nerve. Tenascin protein and mRNA are detectable in increased amounts at the retinal end of the developing optic nerve before the arrival of oligodendrocyte progenitor cells and are restricted to this region in the adult optic nerve. Tenascin is a nonadhesive substrate for oligodendrocytes and their progenitor cells in vitro when offered as a substrate in choice with polyornithine. These observations suggest that tenascin is critical for the establishment and maintenance of the restricted distribution of myelin-forming oligodendrocytes along retinal ganglion cell axons of the mouse.

Original languageEnglish (US)
Pages (from-to)4756-4768
Number of pages13
JournalJournal of Neuroscience
Volume14
Issue number8
StatePublished - Aug 1 1994
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Keywords

  • PDGF α-receptor
  • astrocyte
  • myelination
  • oligodendrocyte
  • oligodendrocyte progenitor cell
  • tenascin

Fingerprint Dive into the research topics of 'Tenascin demarcates the boundary between the myelinated and nonmyelinated part of retinal ganglion cell axons in the developing and adult mouse'. Together they form a unique fingerprint.

  • Cite this