Texture is important in improving the accuracy of mapping photovoltaic power plants: A case study of ningxia autonomous region, china

Xunhe Zhang, Mojtaba Zeraatpisheh, Md Mizanur Rahman, Shujian Wang, Ming Xu

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Photovoltaic (PV) technology is becoming more popular due to climate change because it allows for replacing fossil-fuel power generation to reduce greenhouse gas emissions. Consequently, many countries have been attempting to generate electricity through PV power plants over the last decade. Monitoring PV power plants through satellite imagery, machine learning models, and cloud-based computing systems that may ensure rapid and precise locating with current status on a regional basis are crucial for environmental impact assessment and policy formulation. The effect of fusion of the spectral, textural with different neighbor sizes, and topographic features that may improve machine learning accuracy has not been evaluated yet in PV power plants’ mapping. This study mapped PV power plants using a random forest (RF) model on the Google Earth Engine (GEE) platform. We combined textural features calculated from the Grey Level Co-occurrence Matrix (GLCM), reflectance, thermal spectral features, and Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI) from Landsat-8 imagery and elevation, slope, and aspect from Shuttle Radar Topography Mission (SRTM) as input variables. We found that the textural features from GLCM prominent enhance the accuracy of the random forest model in identifying PV power plants where a neighbor size of 30 pixels showed the best model performance. The addition of texture features can improve model accuracy from a Kappa statistic of 0.904 ± 0.05 to 0.938 ± 0.04 and overall accuracy of 97.45 ± 0.14% to 98.32 ± 0.11%. The topographic and thermal features contribute a slight improvement in modeling. This study extends the knowledge of the effect of various variables in identifying PV power plants from remote sensing data. The texture characteristics of PV power plants at different spatial resolutions deserve attention. The findings of our study have great significance for collecting the geographic information of PV power plants and evaluating their environmental impact.

Original languageEnglish (US)
Article number3909
JournalRemote Sensing
Volume13
Issue number19
DOIs
StatePublished - Oct 1 2021

All Science Journal Classification (ASJC) codes

  • General Earth and Planetary Sciences

Keywords

  • Cloud computing
  • Google Earth Engine
  • Machine learning
  • Remote sensing
  • Solar power

Fingerprint

Dive into the research topics of 'Texture is important in improving the accuracy of mapping photovoltaic power plants: A case study of ningxia autonomous region, china'. Together they form a unique fingerprint.

Cite this