TY - JOUR
T1 - The anti-diabetic effect of eight
T2 - Lagerstroemia speciosa leaf extracts based on the contents of ellagitannins and ellagic acid derivatives
AU - Guo, Sen
AU - Ren, Xiameng
AU - He, Kan
AU - Chen, Xiaozhuo
AU - Zhang, Shanshan
AU - Roller, Marc
AU - Zheng, Bolin
AU - Zheng, Qunyi
AU - Ho, Chi Tang
AU - Bai, Naisheng
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2020.
PY - 2020/2
Y1 - 2020/2
N2 - Previously, we have reported the opposite effects of compounds isolated from Lagerstroemia speciosa leaves on a glucose transport (GLUT4) assay. Ellagitannins from L. speciosa activated GLUT4, while ellagic acid derivatives showed an inhibitory effect. As part of our continuing research on anti-diabetic nutritional supplements, we herein compared the anti-diabetic effects of several extracts (LE1-8) from leaves of L. speciosa using different manufacturing processes based on the contents of ellagitannins and ellagic acid derivatives. Their anti-diabetic effects were evaluated through glucose uptake and adipocyte differentiation in 3T3-L1 cells in vitro as well as alloxan induced diabetic mice in vivo. These extracts were given to mice by gavage at doses of 0.25, 1.0, and 4.0 g per kg body weight once a day for 21 consecutive days. Results showed that LE1 (1.0 g kg-1), LE3 (1.0 or 4.0 g kg-1), LE4 (1.0 or 4.0 g kg-1), LE5 (0.25 or 1.0 or 4.0 g kg-1) and LE7 (1.0 or 4.0 g kg-1) showed significant anti-diabetic effects in alloxan-induced diabetic mice as indicated by the decreased levels of fasting blood glucose, body weight, serum biomarkers, tissue weight and body fat, and increased final insulin levels. LE8 (1.0 g kg-1) showed a moderate anti-diabetic effect as illustrated by the reduced fasting blood glucose level while LE2 and LE6 showed slight effects in alloxan-induced diabetic mice. The potential correlation of the content of ellagitannins, ellagic acid derivatives, and corosolic acid with the anti-diabetic activity was discussed.
AB - Previously, we have reported the opposite effects of compounds isolated from Lagerstroemia speciosa leaves on a glucose transport (GLUT4) assay. Ellagitannins from L. speciosa activated GLUT4, while ellagic acid derivatives showed an inhibitory effect. As part of our continuing research on anti-diabetic nutritional supplements, we herein compared the anti-diabetic effects of several extracts (LE1-8) from leaves of L. speciosa using different manufacturing processes based on the contents of ellagitannins and ellagic acid derivatives. Their anti-diabetic effects were evaluated through glucose uptake and adipocyte differentiation in 3T3-L1 cells in vitro as well as alloxan induced diabetic mice in vivo. These extracts were given to mice by gavage at doses of 0.25, 1.0, and 4.0 g per kg body weight once a day for 21 consecutive days. Results showed that LE1 (1.0 g kg-1), LE3 (1.0 or 4.0 g kg-1), LE4 (1.0 or 4.0 g kg-1), LE5 (0.25 or 1.0 or 4.0 g kg-1) and LE7 (1.0 or 4.0 g kg-1) showed significant anti-diabetic effects in alloxan-induced diabetic mice as indicated by the decreased levels of fasting blood glucose, body weight, serum biomarkers, tissue weight and body fat, and increased final insulin levels. LE8 (1.0 g kg-1) showed a moderate anti-diabetic effect as illustrated by the reduced fasting blood glucose level while LE2 and LE6 showed slight effects in alloxan-induced diabetic mice. The potential correlation of the content of ellagitannins, ellagic acid derivatives, and corosolic acid with the anti-diabetic activity was discussed.
UR - http://www.scopus.com/inward/record.url?scp=85080875370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85080875370&partnerID=8YFLogxK
U2 - 10.1039/c9fo03091c
DO - 10.1039/c9fo03091c
M3 - Article
C2 - 32003379
AN - SCOPUS:85080875370
SN - 2042-6496
VL - 11
SP - 1560
EP - 1571
JO - Food and Function
JF - Food and Function
IS - 2
ER -